亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI

医学 前列腺癌 组织病理学 前列腺切除术 核医学 有效扩散系数 多参数磁共振成像 活检 前列腺 放射科 癌症 磁共振成像 病理 内科学
作者
Riccardo Laudicella,Jan H. Rüschoff,Daniela A. Ferraro,Muriel Brada,Daniel Hausmann,Iliana Mebert,Alexander Maurer,Thomas Hermanns,Daniel Eberli,Niels J. Rupp,Irene A. Burger
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (11): 3917-3928 被引量:24
标识
DOI:10.1007/s00259-022-05787-9
摘要

Abstract Purpose Recently, a significant association was shown between novel growth patterns on histopathology of prostate cancer (PCa) and prostate-specific membrane antigen (PSMA) uptake on [ 68 Ga]PSMA-PET. It is the aim of this study to evaluate the association between these growth patterns and ADC (mm 2 /1000 s) values in comparison to [ 68 Ga]PSMA uptake on PET/MRI. Methods We retrospectively evaluated patients who underwent [ 68 Ga]PSMA PET/MRI for staging or biopsy guidance, followed by radical prostatectomy at our institution between 07/2016 and 01/2020. The dominant lesion per patient was selected based on histopathology and correlated to PET/MRI in a multidisciplinary meeting, and quantified using SUV max for PSMA uptake and ADC mean for diffusion restriction. PCa growth pattern was classified as expansive (EXP) or infiltrative (INF) according to its properties of forming a tumoral mass or infiltrating diffusely between benign glands by two independent pathologists. Furthermore, the corresponding WHO2016 ISUP tumor grade was evaluated. The t test was used to compare means, Pearson’s test for categorical correlation, Cohen’s kappa test for interrater agreement, and ROC curve to determine the best cutoff. Results Sixty-two patients were included (mean PSA 11.7 ± 12.5). The interrater agreement between both pathologists was almost perfect with κ = 0.81. While 25 lesions had an EXP-growth with an ADC mean of 0.777 ± 0.109, 37 showed an INF-growth with a significantly higher ADC mean of 1.079 ± 0.262 ( p < 0.001). We also observed a significant difference regarding PSMA SUV max for the EXP-growth (19.2 ± 10.9) versus the INF-growth (9.4 ± 6.2, p < 0.001). Within the lesions encompassing the EXP- or the INF-growth, no significant correlation between the ISUP groups and ADC mean could be observed ( p = 0.982 and p = 0.861, respectively). Conclusion PCa with INF-growth showed significantly lower SUV max and higher ADC mean values compared to PCa with EXP-growth. Within the growth groups, ADC mean values were independent from ISUP grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
chuan完成签到,获得积分10
6秒前
我要发nature完成签到,获得积分10
8秒前
Honey完成签到 ,获得积分10
10秒前
chuan发布了新的文献求助30
10秒前
13秒前
junjie完成签到,获得积分10
15秒前
xuan完成签到,获得积分10
17秒前
lcxlcx发布了新的文献求助10
19秒前
852应助遇见馅儿饼采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
yar应助科研通管家采纳,获得10
24秒前
yar应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
哈基米德应助科研通管家采纳,获得30
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
lcxlcx完成签到,获得积分10
32秒前
害羞小土豆完成签到,获得积分10
35秒前
kaikai晴完成签到 ,获得积分10
38秒前
小二郎应助wangbq采纳,获得10
38秒前
42秒前
43秒前
49秒前
嘿嘿应助沉静的万天采纳,获得10
50秒前
冷静茉莉完成签到 ,获得积分10
51秒前
妃妃飞发布了新的文献求助10
52秒前
ZT完成签到,获得积分10
55秒前
Wei发布了新的文献求助200
57秒前
nowss完成签到,获得积分10
58秒前
WGS完成签到,获得积分10
1分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
1分钟前
婼汐完成签到 ,获得积分10
1分钟前
loewy完成签到,获得积分10
1分钟前
真实的枕头完成签到,获得积分10
1分钟前
hy完成签到 ,获得积分20
1分钟前
1分钟前
妃妃飞完成签到,获得积分10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047722
求助须知:如何正确求助?哪些是违规求助? 3585542
关于积分的说明 11395087
捐赠科研通 3312610
什么是DOI,文献DOI怎么找? 1822647
邀请新用户注册赠送积分活动 894576
科研通“疑难数据库(出版商)”最低求助积分说明 816406