类有机物
自愈水凝胶
间充质干细胞
上皮-间质转换
管腔(解剖学)
细胞生物学
肾
形态学(生物学)
软组织
化学
纳米技术
生物医学工程
材料科学
生物
病理
医学
过渡(遗传学)
内科学
生物化学
高分子化学
遗传学
基因
作者
Floor A.A. Ruiter,Francis L. C. Morgan,Nadia Roumans,Anika Schumacher,Gisela G. Slaats,Lorenzo Moroni,Vanessa L.S. LaPointe,Matthew B. Baker
出处
期刊:Advanced Science
[Wiley]
日期:2022-05-14
卷期号:9 (20): e2200543-e2200543
被引量:79
标识
DOI:10.1002/advs.202200543
摘要
Abstract Pluripotent stem cell‐derived kidney organoids offer a promising solution to renal failure, yet current organoid protocols often lead to off‐target cells and phenotypic alterations, preventing maturity. Here, various dynamic hydrogel architectures are created, conferring a controlled and biomimetic environment for organoid encapsulation. How hydrogel stiffness and stress relaxation affect renal phenotype and undesired fibrotic markers are investigated. The authors observe that stiff hydrogel encapsulation leads to an absence of certain renal cell types and signs of an epithelial–mesenchymal transition (EMT), whereas encapsulation in soft, stress‐relaxing hydrogels leads to all major renal segments, fewer fibrosis or EMT associated proteins, apical proximal tubule polarization, and primary cilia formation, representing a significant improvement over current approaches to culture kidney organoids. The findings show that engineering hydrogel mechanics and dynamics have a decided benefit for organoid culture. These structure–property–function relationships can enable the rational design of materials, bringing us closer to functional engraftments and disease‐modeling applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI