逆高斯分布
高斯分布
计算机科学
降级(电信)
期望最大化算法
算法
最大化
数学优化
高斯网络模型
反向
统计
分布(数学)
数学
最大似然
电信
物理
量子力学
数学分析
几何学
作者
Xudan Chen,Guoxun Ji,Sun Xin-li,Zhen Li
标识
DOI:10.1177/1748006x19860682
摘要
To build more credible degradation models, it is necessary to consider measurement errors in degradation analysis. This article proposes an inverse Gaussian-based state space model with measurement errors that can capture the unit-to-unit variability of the degradation rate by incorporating a random effect. Then, the lifetime distribution and alarm probabilities are derived. Under the non-Gaussian assumptions, conventional parameter estimation algorithms cannot be applied directly. Therefore, an improved expectation–maximization algorithm that is combined with particle methods is developed to estimate parameters. Finally, this article concludes with a simulation study and two case applications to demonstrate the applicability and advantages of the proposed model.
科研通智能强力驱动
Strongly Powered by AbleSci AI