亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Convolutional Neural Networks for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological Brain Recordings

卷积神经网络 人工智能 脑电图 计算机科学 模式识别(心理学) 脑磁图 特征提取 工件(错误) 特征(语言学) 频道(广播) 独立成分分析 特征选择 语音识别 神经科学 心理学 哲学 语言学 计算机网络
作者
Pierpaolo Croce,Filippo Zappasodi,Laura Marzetti,Arcangelo Merla,Vittorio Pizzella,Antonio Maria Chiarelli
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (8): 2372-2380 被引量:64
标识
DOI:10.1109/tbme.2018.2889512
摘要

Interpretation of the electroencephalographic (EEG) and magnetoencephalographic (MEG) signals requires off-line artifacts removal. Since artifacts share frequencies with brain activity, filtering is insufficient. Blind source separation, mainly through independent component analysis (ICA), is the gold-standard procedure for the identification of artifacts in multi-dimensional recordings. However, a classification of brain and artifactual independent components (ICs) is still required. Since ICs exhibit recognizable patterns, classification is usually performed by experts' visual inspection. This procedure is time consuming and prone to errors. Automatic ICs classification has been explored, often through complex ICs features extraction prior to classification. Relying on deep-learning ability of self-extracting the features of interest, we investigated the capabilities of convolutional neural networks (CNNs) for off-line, automatic artifact identification through ICs without feature selection.A CNN was applied to spectrum and topography of a large dataset of few thousand samples of ICs obtained from multi-channel EEG and MEG recordings acquired during heterogeneous experimental settings and on different subjects. CNN performances, when applied to EEG, MEG, and combined EEG and MEG ICs, were explored and compared with state-of-the-art feature-based automatic classification.Beyond state-of-the-art automatic classification accuracies were demonstrated through cross validation (92.4% EEG, 95.4% MEG, 95.6% EEG+MEG).High CNN classification performances were achieved through heuristical selection of machinery hyperparameters and through the CNN self-selection of the features of interest.Considering the large data availability of multi-channel EEG and MEG recordings, CNNs may be suited for classification of ICs of multi-channel brain electrophysiological recordings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
惠上岸完成签到 ,获得积分10
6秒前
9秒前
周研发布了新的文献求助10
9秒前
Lyuhng+1完成签到 ,获得积分10
11秒前
物语完成签到,获得积分10
12秒前
物语发布了新的文献求助10
14秒前
呼呼夫人完成签到 ,获得积分10
17秒前
英俊的铭应助物语采纳,获得10
18秒前
善学以致用应助物语采纳,获得10
18秒前
Liufgui应助科研通管家采纳,获得20
25秒前
哈基米德应助科研通管家采纳,获得30
25秒前
Liufgui应助科研通管家采纳,获得20
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
Liufgui应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
Liufgui应助科研通管家采纳,获得10
25秒前
天天快乐应助altair采纳,获得20
26秒前
落寞凌波发布了新的文献求助10
33秒前
如意草丛应助惠飞薇采纳,获得10
34秒前
43秒前
47秒前
嗯嗯完成签到 ,获得积分10
51秒前
不能随便完成签到,获得积分10
1分钟前
帅气天奇关注了科研通微信公众号
1分钟前
叛逆黑洞完成签到 ,获得积分10
1分钟前
1分钟前
dt发布了新的文献求助10
1分钟前
mm完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
田様应助斯文弘文采纳,获得10
1分钟前
祖之微笑完成签到,获得积分10
1分钟前
altair发布了新的文献求助20
1分钟前
Thrive完成签到,获得积分10
1分钟前
张宇雯发布了新的文献求助10
1分钟前
dt完成签到,获得积分10
1分钟前
李健应助刀客特幽采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042728
求助须知:如何正确求助?哪些是违规求助? 3580425
关于积分的说明 11383411
捐赠科研通 3308526
什么是DOI,文献DOI怎么找? 1820647
邀请新用户注册赠送积分活动 893435
科研通“疑难数据库(出版商)”最低求助积分说明 815615