Wavelet Denoising of Well Logs and its Geological Performance

小波 降噪 小波变换 噪音(视频) 阈值 模式识别(心理学) 离散小波变换 计算机科学 平稳小波变换 测井 地质学 人工智能 数学 地球物理学 图像(数学)
作者
Jifeng Yu,Kai Guo,Xuexu Yuan,Wenzhao Fu,Zhifeng Xun
出处
期刊:Energy Exploration & Exploitation [SAGE Publishing]
卷期号:28 (2): 87-95 被引量:13
标识
DOI:10.1260/0144-5987.28.2.87
摘要

Well logs play a very important role in exploration and even exploitation of energy resources, but they usually contain kinds of noises which affect the results of the geological interpretation of them. It is common knowledge that wavelet transform does better than Fourier transform in noise removal and suppression of such non-stationary signals as logging signals. However, there are variable choices of the parameters such as the wavelet basis (mother wavelet function), the thresholding rule and the decomposition level etc. in denoising with the wavelet transform. In this paper, the wavelet denoising theory and steps are briefly introduced first, and then lots of numerical experiments on real well logs were done by the authors with different combination of the parameters and the denoising effect analyzed by comparison of the differences between the pre-denoising and post-denoising signals with difference value calculation and frequency spectral analysis. The experiment results show that the wavelet basis ‘sym8’, the soft threshold rule ‘heursure’ and 5-level decomposition are outstanding in the wavelet denoising of well logging data. Furthermore, we took the AC (acoustic logs) well logging data of a certain borehole in Jiyang Depression, Shandong province of North China, for a case study to check the combination of the parameters settled above. It is found that the denoised acoustic logging signal outperforms the original one in revealing the geological information of gas bearing layers. So, we believe that the wavelet transform can do an excellent job in the denoising of well logs on condition that the related parameters are set properly. Also, the authors assume that it would be of bright prospect to extract and reveal some more geological information such as stratigraphic sequences, sedimentary facies and reservoir properties etc. with reasonable denoising process of different kinds of logging data at certain scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助张啊啊啊啊a采纳,获得10
1秒前
111完成签到,获得积分10
2秒前
可爱的函函应助xmxm采纳,获得10
2秒前
5秒前
6秒前
赖向珊给纯金金的求助进行了留言
6秒前
6秒前
梅雨季来信完成签到,获得积分20
7秒前
LL完成签到,获得积分10
7秒前
汉堡包应助时尚的含巧采纳,获得20
7秒前
开放磬发布了新的文献求助10
9秒前
Maisie完成签到 ,获得积分10
9秒前
10秒前
陈住气完成签到,获得积分10
11秒前
redamancy完成签到 ,获得积分10
11秒前
zbb完成签到,获得积分10
12秒前
12秒前
zzz6286完成签到 ,获得积分10
12秒前
xmxm完成签到,获得积分10
12秒前
13秒前
lingjuanwu完成签到,获得积分10
13秒前
VIVA发布了新的文献求助10
14秒前
15秒前
15秒前
努力成为科研大佬完成签到,获得积分10
15秒前
16秒前
16秒前
科研通AI5应助SN采纳,获得10
16秒前
16秒前
月亮完成签到 ,获得积分10
16秒前
xmxm发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
KK发布了新的文献求助10
18秒前
开放磬完成签到,获得积分10
18秒前
物语发布了新的文献求助10
18秒前
在水一方应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得30
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812498
求助须知:如何正确求助?哪些是违规求助? 3357038
关于积分的说明 10384989
捐赠科研通 3074237
什么是DOI,文献DOI怎么找? 1688682
邀请新用户注册赠送积分活动 812296
科研通“疑难数据库(出版商)”最低求助积分说明 766986