已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning models in the prediction of 1-year mortality in patients with advanced hepatocellular cancer on immunotherapy: a proof-of-concept study

医学 内科学 肝细胞癌 肝病学 易普利姆玛 无容量 逻辑回归 队列 癌症 接收机工作特性 肿瘤科 彭布罗利珠单抗 免疫疗法
作者
Thomas Ka Luen Lui,Ka Shing Cheung,Wai K. Leung
出处
期刊:Hepatology International [Springer Nature]
卷期号:16 (4): 879-891 被引量:14
标识
DOI:10.1007/s12072-022-10370-3
摘要

IntroductionImmunotherapy is a new promising treatment for patients with advanced hepatocellular carcinoma (HCC), but is costly and potentially associated with considerable side effects. This study aimed to evaluate the role of machine learning (ML) models in predicting the 1-year cancer-related mortality in advanced HCC patients treated with immunotherapy.Method395 HCC patients who had received immunotherapy (including nivolumab, pembrolizumab or ipilimumab) between 2014 and 2019 in Hong Kong were included. The whole data sets were randomly divided into training (n = 316) and internal validation (n = 79) set. The data set, including 47 clinical variables, was used to construct six different ML models in predicting the risk of 1-year mortality. The performances of ML models were measured by the area under receiver operating characteristic curve (AUC) and their performances were compared with C-Reactive protein and Alpha Fetoprotein in ImmunoTherapY score (CRAFITY) and albumin–bilirubin (ALBI) score. The ML models were further validated with an external cohort between 2020 and 2021.ResultsThe 1-year cancer-related mortality was 51.1%. Of the six ML models, the random forest (RF) has the highest AUC of 0.92 (95% CI 0.87–0.98), which was better than logistic regression (0.82, p = 0.01) as well as the CRAFITY (0.68, p < 0.01) and ALBI score (0.84, p = 0.04). RF had the lowest false positive (2.0%) and false negative rate (5.2%), and performed better than CRAFITY score in the external validation cohort (0.91 vs 0.66, p < 0.01). High baseline AFP, bilirubin and alkaline phosphatase were three common risk factors identified by all ML models.ConclusionML models could predict 1-year cancer-related mortality in HCC patients treated with immunotherapy, which may help to select patients who would benefit from this treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ferry完成签到,获得积分10
刚刚
刚刚
刚刚
袁青寒完成签到 ,获得积分10
1秒前
闻巷雨完成签到 ,获得积分10
1秒前
2秒前
朱钰琪发布了新的文献求助10
3秒前
我是老大应助Mrmiss666采纳,获得10
6秒前
打打应助十一一十采纳,获得100
6秒前
6秒前
7秒前
心心子完成签到 ,获得积分10
7秒前
ROSE应助嘻嘻哈哈采纳,获得230
8秒前
小匡完成签到 ,获得积分10
10秒前
星辰大海应助ffff采纳,获得10
10秒前
LR完成签到,获得积分10
10秒前
。。。发布了新的文献求助10
11秒前
shuang完成签到 ,获得积分10
12秒前
14秒前
淡然大米完成签到 ,获得积分10
14秒前
逍遥小书生完成签到 ,获得积分10
14秒前
14秒前
goufufu完成签到,获得积分10
15秒前
米米米完成签到,获得积分10
16秒前
wanci应助hh采纳,获得10
18秒前
Violet完成签到 ,获得积分10
18秒前
思源应助化工牛马人采纳,获得10
18秒前
18秒前
你今天学了多少完成签到 ,获得积分10
19秒前
leo66发布了新的文献求助10
19秒前
鹿小新完成签到 ,获得积分0
21秒前
两袖清风完成签到 ,获得积分10
21秒前
外向的砖家完成签到 ,获得积分10
22秒前
22秒前
22秒前
米米米发布了新的文献求助10
22秒前
嘻嘻哈哈发布了新的文献求助230
25秒前
ffff发布了新的文献求助10
27秒前
花生四烯酸完成签到 ,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401125
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078609
捐赠科研通 4433209
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426168
关于科研通互助平台的介绍 1404766