Bonobo optimizer: dynamically adaptive heuristic for enhanced MPPT in photovoltaic systems under partial shading – experimental validation with buck converter

光伏系统 计算机科学 降压式变换器 最大功率点跟踪 背景(考古学) 最大功率原理 控制理论(社会学) 工程类 人工智能 电压 电气工程 控制(管理) 逆变器 生物 古生物学
作者
Soufyane Ait El Ouahab,Firdaous Bakkali,Abdellah Amghar,H. Sahsah,Lahcen El Mentaly,Meriem Boudouane
出处
期刊:International Journal of Emerging Electric Power Systems [De Gruyter]
卷期号:26 (5): 849-877
标识
DOI:10.1515/ijeeps-2024-0193
摘要

Abstract The integration of shunt bypass diodes in photovoltaic (P-V) module to mitigate hot spots frequently leads to the emergence of multiple in the PV array characteristics. Researchers consistently strive to develop, integrate, and refine innovative techniques inspired by various natural processes to achieve a global optimum that enhances the overall efficiency of PV systems. However, these techniques face challenges in adapting parameters to strike a delicate balance between exploration and exploitation, which is essential for circumventing local optima, reducing computation times, and refining precision to optimize energy capture. In this context, this paper introduces a groundbreaking new adaptive Maximum Power Point Tracking (MPPT) controller inspired by the social behavior and reproductive tactics observed in bonobos (BO). This innovative approach is underpinned by two key strategies: fission and fusion, with dynamic parameter adjustment in real-time. this enables for efficient exploration and exploitation of the search space, following the positive and negative phases of the BO. This method was compared with three methods: PSO, DE, and ICS, and evaluated through six simulation scenarios, ranging from 1 to 6 peaks, as well as three experimental scenarios: one uniform and the other two involving partial shading, using an Arduino board and a buck converter. According to the comparative analysis, the new BO algorithm outperforms the three other approaches in all performance evaluation parameters. It shows an average improvement in convergence time of more than 39.18 % and an average precision exceeding 99 %, with minimal oscillation in steady-state operation. This translates into an average MPE efficiency of over 96.66 %. Additionally, the experimental results confirm the findings from the simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
工位瘤子完成签到,获得积分10
刚刚
眼睛大鹤发布了新的文献求助10
1秒前
1秒前
2秒前
未LIVE杰完成签到,获得积分10
2秒前
搜集达人应助foxp3采纳,获得10
2秒前
傲娇一一发布了新的文献求助10
2秒前
skhhh完成签到 ,获得积分10
2秒前
satori完成签到,获得积分10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助folklore采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
浮游应助孙凤敏采纳,获得10
3秒前
upcdelx应助科研通管家采纳,获得10
3秒前
安南应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
upcdelx应助科研通管家采纳,获得10
4秒前
研究生end应助科研通管家采纳,获得30
4秒前
wanci应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
小武wwwww完成签到,获得积分10
7秒前
稳重豪英发布了新的文献求助50
7秒前
8秒前
浮游应助眼睛大鹤采纳,获得10
8秒前
allanqiao发布了新的文献求助10
9秒前
善学以致用应助莫封叶采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178730
求助须知:如何正确求助?哪些是违规求助? 4366927
关于积分的说明 13596516
捐赠科研通 4217333
什么是DOI,文献DOI怎么找? 2313035
邀请新用户注册赠送积分活动 1311858
关于科研通互助平台的介绍 1260148