(Invited) Recent Development of Electrochemical Nitrate Reduction

氨生产 硝酸盐 化学 催化作用 无机化学 人口 电化学 氮气 有机化学 电极 社会学 物理化学 人口学
作者
Jeonghoon Lim,Bryan D. McCloskey,Seung Woo Lee,Marta C. Hatzell
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (39): 2301-2301
标识
DOI:10.1149/ma2023-01392301mtgabs
摘要

Understanding the complexities of nitrogen cycle is critical because when the cycle is not in balance, excess reduced and oxidized nitrogen compounds could result in harmful impacts to life. Electrocatalytic conversion of waste nitrate (NO 3 - ) to benign dinitrogen (N 2 ) and ammonia (NH 3 ) fuel is an appealing strategy that may easily integrate with renewable energy. The process does not require chemical addition and thus requires operating costs lower than thermal routes. Nearly all nitrogen-based fertilizers rely on ammonia as a feedstock, and thus the demand for this chemical is heavily dependent on the global population and food demand. Over the next three decades, the global population will continue to dictate the market size and value for ammonia, which consequently will have a significant impact on our energy infrastructure. While electrochemical nitrogen reduction reaction (NRR) requires multiple proton and electron transfer process, ammonia production from nitrate reduction (NO3RR) is catalytic easier than NRR because the adsorbed/activated ion reactants (nitrate and nitrite) have an advantage of a lower dissociation energy for the N−O and N=O bonds (204 and 607 kJ mol -1 ) than that of N≡N bond (941 kJ mol -1 ). The synergistic effect between Cu and Pd has shown a high nitrate conversion yield and nitrogen selectivity. Engineering the Pd and Cu sites is critical but examination of the use of secondary metals in shape-controlled nanoparticle and atomic reconstruction are rare. Here, we controlled Cu surface coverage on Pd nanocube nanoparticle to steer the selectivity between nitrogen and ammonia. In addition, the engineered the atomic structure of Pd and Cu nanoparticles showed high nitrate conversion yield, excellent dinitrogen selectivity, and outstanding cyclic stability. This study provides insights into the rational design of NO3RR electrocatalyst for efficiently transforming nitrate into nitrogen and ammonia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助羊羊羊采纳,获得10
刚刚
lalala发布了新的文献求助10
刚刚
Ariel完成签到,获得积分10
1秒前
1秒前
迅速的幻雪完成签到 ,获得积分10
2秒前
马外奥完成签到,获得积分10
2秒前
金钱发布了新的文献求助10
3秒前
SciGPT应助漂亮冷安采纳,获得10
3秒前
李健应助Lll采纳,获得10
5秒前
5秒前
充电宝应助ly987829采纳,获得10
6秒前
hhhhhhl完成签到,获得积分20
6秒前
河马的香蕉完成签到,获得积分10
7秒前
罗斯ROSE完成签到 ,获得积分10
9秒前
子乔完成签到,获得积分10
9秒前
dbdxyty完成签到,获得积分10
10秒前
在水一方应助Ahha采纳,获得10
10秒前
dyk发布了新的文献求助10
10秒前
努力努力再努力完成签到,获得积分10
11秒前
Ldq完成签到,获得积分10
11秒前
yulia完成签到 ,获得积分10
12秒前
12秒前
Enri完成签到,获得积分10
13秒前
直率的花生完成签到,获得积分10
13秒前
芝士椰果完成签到,获得积分10
13秒前
sunyu完成签到,获得积分10
13秒前
善良的诗珊完成签到 ,获得积分10
14秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
15秒前
15秒前
15秒前
彭于晏应助辣姜采纳,获得30
16秒前
Lll发布了新的文献求助10
18秒前
19秒前
天天快乐应助我爱学习采纳,获得10
21秒前
21秒前
冷艳一德完成签到,获得积分20
21秒前
罗斯ROSE发布了新的文献求助30
21秒前
清河完成签到,获得积分10
22秒前
郭赫平关注了科研通微信公众号
22秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960