Mammography Breast Cancer Screening Triage Using Deep Learning: A UK Retrospective Study

医学 急诊分诊台 乳腺摄影术 回顾性队列研究 工作量 乳腺癌筛查 置信区间 乳腺癌 癌症 急诊医学 内科学 计算机科学 操作系统
作者
Sarah Hickman,Nicholas Roy Payne,Richard T Black,Yuan Huang,Andrew N. Priest,Sue Hudson,Bahman Kasmai,Arne Juette,Muzna Nanaa,Muhammad Iqbal Aniq,Anna Sienko,Fiona J. Gilbert
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (2) 被引量:17
标识
DOI:10.1148/radiol.231173
摘要

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; P < .001) and superior sensitivity (difference, 2.7%; P < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Nishikawa and Lu in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huiluowork完成签到 ,获得积分10
3秒前
wangfaqing942完成签到 ,获得积分10
18秒前
集典完成签到 ,获得积分10
23秒前
颢懿完成签到 ,获得积分10
28秒前
瘦瘦的迎梦完成签到 ,获得积分10
34秒前
Lyn完成签到 ,获得积分10
35秒前
HY完成签到 ,获得积分10
37秒前
独立江湖女完成签到 ,获得积分10
39秒前
坦率雪枫完成签到 ,获得积分10
41秒前
西洲完成签到 ,获得积分10
53秒前
悠悠完成签到 ,获得积分10
55秒前
猪猪完成签到 ,获得积分10
56秒前
59秒前
59秒前
1分钟前
1分钟前
豆腐青菜雨完成签到 ,获得积分10
1分钟前
1分钟前
HXX19完成签到 ,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
默11完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分10
1分钟前
小小少年发布了新的文献求助10
2分钟前
xiaofeiyan完成签到 ,获得积分10
2分钟前
2分钟前
自觉石头完成签到 ,获得积分10
2分钟前
微笑的若魔完成签到 ,获得积分10
2分钟前
轩辕德地完成签到,获得积分10
2分钟前
悄悄睡觉完成签到 ,获得积分10
2分钟前
alexlpb完成签到,获得积分0
2分钟前
2分钟前
橙子完成签到 ,获得积分10
2分钟前
大模型应助yee采纳,获得10
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
2分钟前
居居侠完成签到 ,获得积分10
2分钟前
森森完成签到 ,获得积分10
2分钟前
秋水完成签到 ,获得积分10
2分钟前
ybwei2008_163完成签到,获得积分20
2分钟前
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043535
求助须知:如何正确求助?哪些是违规求助? 3581248
关于积分的说明 11383837
捐赠科研通 3308656
什么是DOI,文献DOI怎么找? 1821127
邀请新用户注册赠送积分活动 893553
科研通“疑难数据库(出版商)”最低求助积分说明 815751