电子迁移率
薄膜晶体管
材料科学
有机半导体
晶体管
纳米技术
半导体
感应高电子迁移率晶体管
工程物理
载流子
光电子学
场效应晶体管
电压
电气工程
物理
工程类
图层(电子)
作者
Alexandra F. Paterson,Saumya Singh,Kealan J. Fallon,Thomas Hodsden,Yang Han,Bob C. Schroeder,Hugo Bronstein,Martin Heeney,Iain McCulloch,Thomas D. Anthopoulos
标识
DOI:10.1002/adma.201801079
摘要
Abstract Over the past three decades, significant research efforts have focused on improving the charge carrier mobility of organic thin‐film transistors (OTFTs). In recent years, a commonly observed nonlinearity in OTFT current–voltage characteristics, known as the “kink” or “double slope,” has led to widespread mobility overestimations, contaminating the relevant literature. Here, published data from the past 30 years is reviewed to uncover the extent of the field‐effect mobility hype and identify the progress that has actually been achieved in the field of OTFTs. Present carrier‐mobility‐related challenges are identified, finding that reliable hole and electron mobility values of 20 and 10 cm 2 V −1 s −1 , respectively, have yet to be achieved. Based on the analysis, the literature is then reviewed to summarize the concepts behind the success of high‐performance p‐type polymers, along with the latest understanding of the design criteria that will enable further mobility enhancement in n‐type polymers and small molecules, and the reasons why high carrier mobility values have been consistently produced from small molecule/polymer blend semiconductors. Overall, this review brings together important information that aids reliable OTFT data analysis, while providing guidelines for the development of next‐generation organic semiconductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI