A mathematical framework for improved weight initialization of neural networks using Lagrange multipliers

初始化 水准点(测量) 计算机科学 趋同(经济学) 人工神经网络 拉格朗日乘数 数学优化 算法 人工智能 数学 大地测量学 地理 经济 程序设计语言 经济增长
作者
Ingeborg de Pater,Mihaela Mitici
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 579-594 被引量:2
标识
DOI:10.1016/j.neunet.2023.07.035
摘要

A good weight initialization is crucial to accelerate the convergence of the weights in a neural network. However, training a neural network is still time-consuming, despite recent advances in weight initialization approaches. In this paper, we propose a mathematical framework for the weight initialization in the last layer of a neural network. We first derive analytically a tight constraint on the weights that accelerates the convergence of the weights during the back-propagation algorithm. We then use linear regression and Lagrange multipliers to analytically derive the optimal initial weights and initial bias of the last layer, that minimize the initial training loss given the derived tight constraint. We also show that the restrictive assumption of traditional weight initialization algorithms that the expected value of the weights is zero is redundant for our approach. We first apply our proposed weight initialization approach to a Convolutional Neural Network that predicts the Remaining Useful Life of aircraft engines. The initial training and validation loss are relatively small, the weights do not get stuck in a local optimum, and the convergence of the weights is accelerated. We compare our approach with several benchmark strategies. Compared to the best performing state-of-the-art initialization strategy (Kaiming initialization), our approach needs 34% less epochs to reach the same validation loss. We also apply our approach to ResNets for the CIFAR-100 dataset, combined with transfer learning. Here, the initial accuracy is already at least 53%. This gives a faster weight convergence and a higher test accuracy than the benchmark strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8WO978完成签到,获得积分10
刚刚
酷炫觅松发布了新的文献求助10
1秒前
2秒前
xiaozy完成签到,获得积分10
2秒前
3秒前
3秒前
怦然心动发布了新的文献求助10
3秒前
vv发布了新的文献求助10
5秒前
Sun完成签到,获得积分10
6秒前
Evnnnn发布了新的文献求助10
6秒前
四亿发布了新的文献求助30
6秒前
Liiii发布了新的文献求助10
7秒前
橘子完成签到,获得积分10
7秒前
可爱的函函应助甜北枳采纳,获得10
7秒前
浮游应助张11采纳,获得10
7秒前
深情安青应助钟梓袄采纳,获得10
8秒前
邱邱发布了新的文献求助10
8秒前
魏杨洋发布了新的文献求助10
10秒前
10秒前
10秒前
xxfsx应助逆流的鱼采纳,获得10
11秒前
11秒前
11秒前
桐桐应助tttdddzzz采纳,获得10
12秒前
TK完成签到,获得积分10
12秒前
酷波er应助chen采纳,获得10
13秒前
sssdd完成签到,获得积分10
13秒前
TT完成签到,获得积分10
13秒前
JamesPei应助郭郭采纳,获得20
14秒前
14秒前
14秒前
姜茶发布了新的文献求助10
15秒前
Cici发布了新的文献求助10
15秒前
可爱的函函应助春儿采纳,获得10
15秒前
坦率绯发布了新的文献求助10
16秒前
19秒前
Evnnnn完成签到,获得积分10
20秒前
20秒前
orixero应助欢呼怜烟采纳,获得10
20秒前
木木三完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183642
求助须知:如何正确求助?哪些是违规求助? 4369861
关于积分的说明 13607883
捐赠科研通 4221715
什么是DOI,文献DOI怎么找? 2315442
邀请新用户注册赠送积分活动 1314022
关于科研通互助平台的介绍 1262893