A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter

归一化差异植被指数 遥感 噪音(视频) 时间序列 像素 系列(地层学) 降噪 环境科学 滤波器(信号处理) 计算机科学 数学 地理 统计 人工智能 叶面积指数 生态学 计算机视觉 古生物学 图像(数学) 生物
作者
Ruyin Cao,Yang Chen,Miaogen Shen,Jin Chen,Ji Zhou,Cong Wang,Wei Yang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:217: 244-257 被引量:267
标识
DOI:10.1016/j.rse.2018.08.022
摘要

Abstract High-quality Normalized Difference Vegetation Index (NDVI) time-series data are important for many regional and global ecological and environmental applications. Unfortunately, residual noise in current NDVI time-series products greatly hinders their further applications. Several noise-reduction methods have been proposed during the past two decades, but two important issues remain to be resolved. First, the methods usually perform poorly for cases of continuous missing data in the NDVI time series. Second, they generally assume negatively biased noise in the NDVI time series and thus erroneously raise some local low NDVI values in certain cases (e.g., the harvest period for multi-season crops).We therefore developed a new noise-reduction algorithm called the Spatial-Temporal Savitzky-Golay (STSG) method. The new method assumes discontinuous clouds in space and employs neighboring pixels to assist in the noise reduction of the target pixel in a particular year. The relationship between the NDVI of neighboring pixels and that of the target pixel was obtained from multi-year NDVI time series thanks to the accumulation of NDVI data over many years, which would have been impossible a decade ago. We tested STSG on 16-day composite MODIS NDVI time-series data from 2001 to 2016 in regions of mainland China and 11 phenology camera sites in North American. The results showed that STSG performed significantly better compared with four previous widely used methods (i.e., the Asymmetric Gaussian, Double Logistic, Fourier-based, and Savitzky-Golay filter methods). One obvious advantage was that STSG was able to address the problem of temporally continuous NDVI gaps. STSG effectively increased local low NDVI values and simultaneously avoided overcorrecting low NDVI values during the crop harvest period. In addition, implementing STSG required only raw MODIS NDVI time-series products without any additional burden of data requirements. All of these advantages make STSG a promising noise-reduction method for generating high-quality NDVI time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄taotao发布了新的文献求助30
刚刚
@∞完成签到 ,获得积分10
刚刚
1秒前
yydragen应助一念春风采纳,获得30
2秒前
yue957发布了新的文献求助10
2秒前
鲲kun发布了新的文献求助10
3秒前
4秒前
李博完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
7秒前
脑洞疼应助黄taotao采纳,获得10
7秒前
7秒前
8秒前
小大巫发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
微尘之末发布了新的文献求助30
11秒前
兀拉拉完成签到,获得积分10
13秒前
淡定白易发布了新的文献求助10
13秒前
哈哈就是你哦完成签到,获得积分10
13秒前
Hello应助YYY采纳,获得10
14秒前
15秒前
无心的紫山完成签到,获得积分10
15秒前
Lucas应助一念春风采纳,获得10
16秒前
wmumu发布了新的文献求助10
16秒前
17秒前
Archy发布了新的文献求助10
17秒前
天气先生关注了科研通微信公众号
18秒前
19秒前
Jade发布了新的文献求助10
21秒前
森鹿完成签到,获得积分10
21秒前
鲲kun完成签到,获得积分10
21秒前
崔佳鑫完成签到 ,获得积分10
21秒前
21秒前
22秒前
诸青苗完成签到,获得积分20
22秒前
甜蜜的楷瑞应助淡定白易采纳,获得10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4041959
求助须知:如何正确求助?哪些是违规求助? 3579667
关于积分的说明 11382085
捐赠科研通 3308197
什么是DOI,文献DOI怎么找? 1820324
邀请新用户注册赠送积分活动 893341
科研通“疑难数据库(出版商)”最低求助积分说明 815583