Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications

石墨烯 材料科学 生物相容性 纳米技术 制作 弹性体 再生医学 3D打印 组织工程 墨水池 生物医学工程 复合材料 化学 细胞 生物化学 医学 病理 冶金 替代医学
作者
Adam E. Jakus,Ethan B. Secor,Alexandra L. Rutz,Sumanas W. Jordan,Mark C. Hersam,Ramille N. Shah
出处
期刊:ACS Nano [American Chemical Society]
卷期号:9 (4): 4636-4648 被引量:682
标识
DOI:10.1021/acsnano.5b01179
摘要

The exceptional properties of graphene enable applications in electronics, optoelectronics, energy storage, and structural composites. Here we demonstrate a 3D printable graphene (3DG) composite consisting of majority graphene and minority polylactide-co-glycolide, a biocompatible elastomer, 3D-printed from a liquid ink. This ink can be utilized under ambient conditions via extrusion-based 3D printing to create graphene structures with features as small as 100 μm composed of as few as two layers (<300 μm thick object) or many hundreds of layers (>10 cm thick object). The resulting 3DG material is mechanically robust and flexible while retaining electrical conductivities greater than 800 S/m, an order of magnitude increase over previously reported 3D-printed carbon materials. In vitro experiments in simple growth medium, in the absence of neurogenic stimuli, reveal that 3DG supports human mesenchymal stem cell (hMSC) adhesion, viability, proliferation, and neurogenic differentiation with significant upregulation of glial and neuronal genes. This coincides with hMSCs adopting highly elongated morphologies with features similar to axons and presynaptic terminals. In vivo experiments indicate that 3DG has promising biocompatibility over the course of at least 30 days. Surgical tests using a human cadaver nerve model also illustrate that 3DG has exceptional handling characteristics and can be intraoperatively manipulated and applied to fine surgical procedures. With this unique set of properties, combined with ease of fabrication, 3DG could be applied toward the design and fabrication of a wide range of functional electronic, biological, and bioelectronic medical and nonmedical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun_shen完成签到,获得积分10
刚刚
Gao完成签到 ,获得积分10
1秒前
2秒前
端庄的绿竹完成签到,获得积分10
3秒前
瘦瘦的艳发布了新的文献求助10
3秒前
丘比特应助飞翔的鸣采纳,获得10
4秒前
lyuyl发布了新的文献求助10
5秒前
Sunny完成签到,获得积分10
6秒前
大个应助QQ星采纳,获得10
6秒前
完美世界应助xixi采纳,获得10
7秒前
7秒前
啾啾咪咪完成签到,获得积分10
7秒前
8秒前
tent01发布了新的文献求助10
8秒前
李健应助wenxianxiazai123采纳,获得10
11秒前
科研通AI6应助科研小锄头采纳,获得10
11秒前
苹果音响应助WANDour采纳,获得10
11秒前
清爽山河完成签到 ,获得积分10
12秒前
努力学习发布了新的文献求助20
12秒前
Fairy发布了新的文献求助10
15秒前
15秒前
sober完成签到,获得积分10
17秒前
17秒前
yousheng完成签到,获得积分10
18秒前
不会写完成签到,获得积分10
19秒前
香蕉觅云应助19554133922采纳,获得10
19秒前
ssf发布了新的文献求助30
19秒前
lyuyl完成签到,获得积分10
20秒前
like411发布了新的文献求助10
20秒前
21秒前
瑾瑜关注了科研通微信公众号
22秒前
SciGPT应助sober采纳,获得10
23秒前
xixi发布了新的文献求助10
23秒前
王一博完成签到,获得积分10
23秒前
24秒前
Eternity完成签到,获得积分10
24秒前
细腻怜翠关注了科研通微信公众号
24秒前
明天会更好完成签到,获得积分20
25秒前
25秒前
xxfsx应助科研通管家采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543