已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fin-Bayes: A Multi-Objective Bayesian Optimization Framework for Soft Robotic Fingers

稳健性(进化) 计算机科学 灵活性(工程) 贝叶斯优化 机器学习 夹持器 实验设计 人工智能 工程类 机械工程 数学 生物化学 基因 统计 化学
作者
Xing Wang,Bing Wang,Joshua Pinskier,Yue Xie,James Brett,R. Scalzo,David Howard
出处
期刊:Soft robotics [Mary Ann Liebert, Inc.]
卷期号:11 (5): 791-801 被引量:10
标识
DOI:10.1089/soro.2023.0134
摘要

Computational design is a critical tool to realize the full potential of Soft Robotics, maximizing their inherent benefits of high performance, flexibility, robustness, and safe interaction. Practically, computational design entails a rapid iterative search process over a parameterized design space, with assessment using (frequently) computational modeling and (more rarely) physical experimentation. Bayesian approaches work well for these expensive-to-analyze systems and can lead to efficient exploration of design space than comparative algorithms. However, such computational design typically entails weaknesses related to a lack of fidelity in assessment, a lack of sufficient iterations, and/or optimizing to a singular objective function. Our work directly addresses these shortcomings. First, we harness a sophisticated nonlinear Finite Element Modeling suite that explicitly considers geometry, material, and contact nonlinearity to perform rapid accurate characterization. We validate this through extensive physical testing using an automated test rig and printed robotic fingers, providing far more experimental data than that reported in the literature. Second, we explore a significantly larger design space than comparative approaches, with more free variables and more opportunity to discover novel, high performance designs. Finally, we use a multiobjective Bayesian optimizer that allows for the identification of promising trade-offs between two critical objectives, compliance and contact force. We test our framework on optimizing Fin Ray grippers, which are ubiquitous throughout research and industry due to their passive compliance and durability. Results demonstrate the benefits of our approach, allowing for the optimization and identification of promising gripper designs within an extensive design space, which are then 3D printed and usable in reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月完成签到 ,获得积分10
1秒前
不见高山完成签到,获得积分10
5秒前
所所应助xh采纳,获得10
6秒前
7秒前
GPTea给邱乐乐的求助进行了留言
8秒前
10秒前
chenchenchen完成签到,获得积分20
10秒前
11秒前
ice发布了新的文献求助10
13秒前
chenchenchen发布了新的文献求助10
14秒前
王珺发布了新的文献求助10
16秒前
Galri完成签到 ,获得积分10
18秒前
文艺的鲜花完成签到 ,获得积分10
20秒前
广州小肥羊完成签到 ,获得积分10
21秒前
bkagyin应助chenchenchen采纳,获得10
21秒前
小马甲应助xtt121采纳,获得10
22秒前
小学生的练习簿完成签到,获得积分0
25秒前
26秒前
26秒前
27秒前
河鲸完成签到 ,获得积分10
30秒前
贪玩草丛发布了新的文献求助10
31秒前
李志强发布了新的文献求助10
32秒前
zzzz发布了新的文献求助10
33秒前
方圆完成签到 ,获得积分10
37秒前
38秒前
starrism完成签到,获得积分10
38秒前
扶光完成签到 ,获得积分10
39秒前
情怀应助爱笑的曼柔采纳,获得10
40秒前
starrism发布了新的文献求助10
41秒前
矿渣完成签到,获得积分10
42秒前
nulinuli完成签到 ,获得积分10
43秒前
43秒前
ABCD完成签到,获得积分10
44秒前
白大帅气完成签到,获得积分10
45秒前
浮游应助xh采纳,获得10
45秒前
HuLL完成签到 ,获得积分10
46秒前
满意的伊完成签到,获得积分10
50秒前
桐桐应助ccm采纳,获得10
52秒前
善良的嫣完成签到 ,获得积分10
54秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209697
求助须知:如何正确求助?哪些是违规求助? 4386894
关于积分的说明 13661870
捐赠科研通 4246307
什么是DOI,文献DOI怎么找? 2329694
邀请新用户注册赠送积分活动 1327444
关于科研通互助平台的介绍 1279811