标题 |
![]() 基于多尺度特征注意和结构化知识图传播的EHR编码
相关领域
计算机科学
杠杆(统计)
卷积神经网络
医学分类
编码(社会科学)
医学诊断
机器学习
领域知识
特征学习
人工智能
自然语言处理
数学
医学
统计
病理
护理部
|
网址 | |
DOI | |
其它 | Assigning standard medical codes (e.g., ICD-9-CM) representing diagnoses or procedures to electronic health record (EHR) is an important task in the medical domain. However, automatic coding is difficult since the clinical note is composed of multiple long and heterogeneous textual narratives (e.g., discharge diagnosis, pathology reports, surgical procedure notes). Furthermore, the code label space is large and the label distribution is extremely unbalanced. The state-of-the-art methods mainly regard EHR coding as a multi-label text classification task and use shallow convolution neural network with fixed window size, which is incapable of learning variable n-gram features and the ontology structure between codes. In this paper, we leverage a densely connected convolutional neural network which is able to produce variable n-gram features for clinical note feature learning. |
求助人 | |
下载 | 求助已完成,仅限求助人下载。 |
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|