Global Oceanic Eddy-Front Associations From Synergetic Remote Sensing Data by Deep Learning

涡流 反气旋 地质学 前线(军事) 边界电流 气候学 赛车滑头 洋流 遥感 气象学 海洋学 物理 湍流 合成孔径雷达
作者
Ying Ma,Fenglin Tian,Shuang Long,Baoxiang Huang,Wen Liu,Ge Chen
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3310053
摘要

Recently, fronts (eddies) at the margins of eddies (fronts) have been discovered by observing sea surface temperature (SST) and sea level anomaly (SLA) data. They can both induce strong vertical motions and submesoscale processes, and are important for the vertical exchange of ocean mass and energy as well as ocean ecological processes. However, it raises an important challenge about the global spatiotemporal distribution of eddy-induced fronts and frontal eddies. This letter proposes a deep learning (DL) approach, dubbed eddy-front association detection network (EFADN), that is appropriate for mining eddy-front associations (EFAs) to extract the features of eddy-induced fronts (anticyclonic and cyclonic eddy-induced fronts) and frontal eddies [frontal anticyclonic eddies (AEs) and frontal cyclonic eddies (CEs)] from SLA and SST satellite data during 2006–2015 in the global ocean. The EFADN model integrates encoder-decoder and attention structures. The introduced spatial attention (SA) module in attention structure utilizes large-scale convolutional kernels to extract spatial information, which enlarges the receptive field to enhance the recognition of topological structures between eddies and fronts, improving the ability of EFA detection. The results of comparative experiments demonstrate that EFADN surpasses the state-of-the-art (SOTA) eddy detection model. Ablation studies underscore the crucial importance of all modules within EFADN for achieving accurate detection of EFAs. Moreover, the spatiotemporal distribution characteristics of eddy-induced fronts and frontal eddies are displayed. They are widely dispersed in the western boundary current (WBC) and Antarctic Circumpolar Current (ACC) regions, and they are active in the boreal summer while weak in the austral summer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
麦麦发布了新的文献求助10
2秒前
2秒前
顾矜应助Sisyphus采纳,获得10
5秒前
52pry发布了新的文献求助10
7秒前
愉快的馒头完成签到,获得积分10
9秒前
迅速冥茗完成签到,获得积分10
10秒前
helly完成签到,获得积分10
10秒前
qqs完成签到,获得积分0
10秒前
czz完成签到,获得积分10
15秒前
乐乐应助满意冰露采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
Luka应助科研通管家采纳,获得50
20秒前
pcr163应助科研通管家采纳,获得50
20秒前
顾矜应助认真荣轩采纳,获得10
22秒前
眠羊完成签到,获得积分10
27秒前
30秒前
科研通AI5应助Stringgggg采纳,获得10
30秒前
赘婿应助Steven采纳,获得10
30秒前
满意冰露完成签到,获得积分10
33秒前
40秒前
科研通AI5应助美味cookies采纳,获得10
40秒前
ln完成签到 ,获得积分10
42秒前
44秒前
Jasper应助捌贰陆柒采纳,获得10
50秒前
123发布了新的文献求助10
50秒前
50秒前
科研通AI5应助harri采纳,获得30
52秒前
54秒前
充电宝应助安徽梁朝伟采纳,获得10
56秒前
yfy发布了新的文献求助10
57秒前
Ning发布了新的文献求助10
57秒前
1分钟前
CodeCraft应助123采纳,获得10
1分钟前
文献看不懂应助lizhiqian2024采纳,获得10
1分钟前
bkagyin应助昭谏采纳,获得10
1分钟前
ajc发布了新的文献求助10
1分钟前
1分钟前
合一海盗关注了科研通微信公众号
1分钟前
歇儿哒哒发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780490
求助须知:如何正确求助?哪些是违规求助? 3325900
关于积分的说明 10224836
捐赠科研通 3041011
什么是DOI,文献DOI怎么找? 1669159
邀请新用户注册赠送积分活动 799019
科研通“疑难数据库(出版商)”最低求助积分说明 758663