A novel multimodal framework for early diagnosis and classification of COPD based on CT scan images and multivariate pulmonary respiratory diseases

慢性阻塞性肺病 人工智能 计算机科学 医学影像学 呼吸音 医学 直方图 模式识别(心理学) 放射科 机器学习 图像(数学) 哮喘 内科学
作者
Santosh Kumar,Vijesh Bhagat,Prakash Sahu,Mithliesh Kumar Chaube,Ajoy Kumar Behera,Mohsen Guizani,Raffaele Gravina,Michele Di Dio,Giancarlo Fortino,Edward Curry,Saeed Hamood Alsamhi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107911-107911 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107911
摘要

Chronic Obstructive Pulmonary Disease (COPD) is one of the world's worst diseases; its early diagnosis using existing methods like statistical machine learning techniques, medical diagnostic tools, conventional medical procedures, and other methods is challenging due to misclassification results of COPD diagnosis and takes a long time to perform accurate prediction. Due to the severe consequences of COPD, detection and accurate diagnosis of COPD at an early stage is essential. This paper aims to design and develop a multimodal framework for early diagnosis and accurate prediction of COPD patients based on prepared Computerized Tomography (CT) scan images and lung sound/cough (audio) samples using machine learning techniques, which are presented in this study. The proposed multimodal framework extracts texture, histogram intensity, chroma, Mel-Frequency Cepstral Coefficients (MFCCs), and Gaussian scale space from the prepared CT images and lung sound/cough samples. Accurate data from All India Institute Medical Sciences (AIIMS), Raipur, India, and the open respiratory CT images and lung sound/cough (audio) sample dataset validate the proposed framework. The discriminatory features are selected from the extracted feature sets using unsupervised ML techniques, and customized ensemble learning techniques are applied to perform early classification and assess the severity levels of COPD patients. The proposed framework provided 97.50%, 98%, and 95.30% accuracy for early diagnosis of COPD patients based on the fusion technique, CT diagnostic model, and cough sample model. Finally, we compare the performance of the proposed framework with existing methods, current approaches, and conventional benchmark techniques for early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静白翠发布了新的文献求助10
刚刚
littlewhite发布了新的文献求助10
1秒前
科研通AI5应助伏城采纳,获得10
1秒前
2秒前
置身事内发布了新的文献求助30
3秒前
多情的忆之完成签到,获得积分10
3秒前
夏野完成签到,获得积分10
4秒前
4秒前
加菲丰丰应助科研通管家采纳,获得10
4秒前
zyc1111111应助科研通管家采纳,获得20
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
4秒前
iswull完成签到,获得积分10
5秒前
完美世界应助诚心的源智采纳,获得10
5秒前
勇毅前行完成签到,获得积分10
7秒前
打打应助WongGingYong采纳,获得10
7秒前
赖向珊发布了新的文献求助10
8秒前
Keming完成签到,获得积分10
10秒前
天天向上发布了新的文献求助10
10秒前
11秒前
13秒前
13秒前
14秒前
Beebee24完成签到,获得积分10
14秒前
Jasper应助浪费采纳,获得10
15秒前
hsy发布了新的文献求助10
15秒前
16秒前
16秒前
伏城发布了新的文献求助10
17秒前
17秒前
zhuangxiong完成签到,获得积分20
17秒前
18秒前
LHHL发布了新的文献求助10
19秒前
Singularity应助天天向上采纳,获得10
19秒前
小付发布了新的文献求助10
21秒前
21秒前
21秒前
丘比特应助vane采纳,获得10
22秒前
22秒前
iswull发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791285
求助须知:如何正确求助?哪些是违规求助? 3335809
关于积分的说明 10277370
捐赠科研通 3052520
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803125
科研通“疑难数据库(出版商)”最低求助积分说明 761102