SAC-ConvLSTM: A novel spatio-temporal deep learning-based approach for a short term power load forecasting

自相关 计算机科学 人工智能 时间序列 空间分析 期限(时间) 支持向量机 自回归模型 模式识别(心理学) 算法 系列(地层学) 数据挖掘 机器学习 统计 数学 物理 古生物学 生物 量子力学
作者
Rasoul Jalalifar,M. R. Delavar,Sayed Farid Ghaderi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121487-121487 被引量:49
标识
DOI:10.1016/j.eswa.2023.121487
摘要

The short-term spatiotemporal load forecasting of power distribution networks has been extensively studied in light of high importance in distribution system control and consumption management. Load forecasting is dependent on temporal and spatial parameters e.g., temperature, rainfall, and land use. Additionally, load time series have spatial autocorrelation in cities. Deep learning has been recently demonstrated to be effective and efficient in time-series and load forecasting in power distribution networks. The present study proposes a new algorithm based on Spatial Auto Correlation and Convolutional Long Short-Term Memory (SAC-ConvLSTM) algorithm via spatiotemporal power load autocorrelation modeling and deep learning. Load time-series signals in a power distribution network are decomposed into sub-signals using the discrete wavelet transform (DWT). Then, the spatio-temporal autocorrelation of sub-signals is calculated, alleviating prediction model complexity using spatial statistics. The areas with significant positive/negative/ no significant autocorrelation in each time-series sub-signal are separately used as the input of the SAC-ConvLSTM algorithm. Finally, the sub-signals are reconstructed into the load signals. This algorithm models the spatial relationships in time-series at different time intervals for power consumption forecasting. The proposed methodology was found to outperform the support vector machine (SVM), Long Short Term Memory (LSTM), Convolutional LSTM (ConvLSTM), Convolutional Gated Recurrent Unit (ConvGRU), Planar Flow-Based Variational Auto-Encoder (PFVAE) and Federated Averaging (FedAVG) algorithms in short-term power load forecasting for short term forecasting of up to two weeks, based on the evaluation metrics of root-mean-square error (RMSE) and mean absolute error (MAE), producing values of 11.08% and 7.02% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
最佳损友塔图姆完成签到,获得积分10
刚刚
嘟嘟完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
Marvi完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
morry5007发布了新的文献求助10
5秒前
7秒前
wxxsx发布了新的文献求助10
7秒前
夏蝉发布了新的文献求助10
7秒前
桔子发布了新的文献求助10
8秒前
卓聪健完成签到 ,获得积分10
8秒前
桐桐应助Jeff采纳,获得10
9秒前
酷酷元风完成签到,获得积分10
10秒前
10秒前
刘雨森发布了新的文献求助10
12秒前
hailee发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
超级小飞侠完成签到 ,获得积分10
15秒前
15秒前
搜集达人应助yuanyuan采纳,获得10
16秒前
16秒前
18秒前
科研通AI6应助桔子采纳,获得10
18秒前
思源应助痴情的飞鸟采纳,获得10
19秒前
20秒前
20秒前
Jeff发布了新的文献求助10
20秒前
无极微光应助zzz采纳,获得20
20秒前
科研通AI2S应助wwl采纳,获得10
21秒前
迟山完成签到,获得积分10
21秒前
Katherine发布了新的文献求助20
22秒前
Jasper应助Dandanhuang采纳,获得10
23秒前
雅若晨兮发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598711
求助须知:如何正确求助?哪些是违规求助? 4684157
关于积分的说明 14833941
捐赠科研通 4664558
什么是DOI,文献DOI怎么找? 2537377
邀请新用户注册赠送积分活动 1504904
关于科研通互助平台的介绍 1470606