Artificial neural network-based shelf life prediction approach in the food storage process: A review

人工神经网络 计算机科学 机器学习 人工智能 过程(计算) 预测建模 保质期 均方误差 工程类 数学 统计 机械工程 操作系统
作者
Ce Shi,Zhiyao Zhao,Zhixin Jia,Mengyuan Hou,Xinting Yang,Xiaoguo Ying,Zengtao Ji
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:64 (32): 12009-12024 被引量:24
标识
DOI:10.1080/10408398.2023.2245899
摘要

AbstractThe prediction of food shelf life has become a vital tool for distributors and consumers, enabling them to determine storage and optimal edible time, thus avoiding unexpected food waste. Artificial neural network (ANN) have emerged as an effective, fast and accurate method for modeling, simulating and predicting shelf life in food. ANNs are capable of tackling nonlinear, complex and ill-defined problems between the variables without prior knowledge. ANN model exhibited excellent fit performance evidenced by low root mean squared error and high correlation coefficient. The low relative error between actual values and predicted values from the ANN model demonstrates its high accuracy. This paper describes the modeling of ANN in food quality prediction, encompassing commonly used ANN architectures, ANN simulation techniques, and criteria for evaluating ANN model performance. The review focuses on the application of ANN for modeling nonlinear food quality during storage, including dairy, meat, aquatic, fruits, and vegetables products. The future prospects of ANN development mainly focus on optimal models and learning algorithm selection, multiple model fusion, self-learning and self-correcting shelf-life prediction model development, and the potential utilization of deep learning techniques.HighlightsANN-based food shelf life prediction methods are reviewed.This paper discusses application of ANN in the food storage process.BPNN is the mainstream ANN architecture used for the prediction of food quality.ANNs are useful for prediction of outputs with high accuracy.Future trends of ANN in the agri-supply chain are evaluated.Keywords: Artificial neural networkmodelingshelf life predictionfoodstorage Disclosure statementAll authors confirmed no conflicts of interest.Additional informationFundingThis study was supported by the National Key Research and Development Program of China (2022YFD2100500), the National Engineering Laboratory for Agri-product Quality Traceability (PT2023-32), Beijing Agricultural Forestry Academy Foundation (QNJJ202218) and the Fund of Young Beijing Scholar, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
A晨完成签到,获得积分10
4秒前
所所应助Capybara采纳,获得10
5秒前
丹曦发布了新的文献求助10
6秒前
科研通AI5应助survivaluu采纳,获得10
6秒前
顾矜应助wyb采纳,获得10
7秒前
7秒前
8秒前
8秒前
冰魂应助朴诗雅Yay采纳,获得10
9秒前
火火发布了新的文献求助10
9秒前
10秒前
nulinuli发布了新的文献求助10
12秒前
12秒前
具体问题具体分析完成签到,获得积分10
13秒前
13秒前
13秒前
xiaoyeken发布了新的文献求助10
13秒前
hh发布了新的文献求助10
13秒前
14秒前
在水一方应助satchzhao采纳,获得10
14秒前
15秒前
15秒前
15秒前
jj158发布了新的文献求助10
17秒前
A晨发布了新的文献求助10
18秒前
Cynthia发布了新的文献求助10
19秒前
东南行胜发布了新的文献求助10
19秒前
cotton发布了新的文献求助10
19秒前
19秒前
xiaoyeken完成签到,获得积分10
20秒前
张涛发布了新的文献求助10
22秒前
藜颵完成签到,获得积分20
25秒前
25秒前
qiao应助ecrrry采纳,获得10
27秒前
执着的灵阳完成签到,获得积分10
27秒前
28秒前
明理问柳完成签到,获得积分10
29秒前
nana完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792