亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TNPC: Transformer-based network for point cloud classification

计算机科学 点云 计算 人工智能 变压器 特征提取 模式识别(心理学) 算法 工程类 电压 电气工程
作者
Wei Zhou,Yiheng Zhao,Yi Xiao,Xuanlin Min,Jun Yi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122438-122438 被引量:12
标识
DOI:10.1016/j.eswa.2023.122438
摘要

Point cloud classification has emerged as a vital research area in several emerging applications, including robotics and autonomous driving. However, discriminative feature learning has long been a challenging issue owing to the irregularity and disorder of point clouds. Recently, although Transformer-based methods can achieve high accuracy in point cloud learning, plenty of Transformer layers bring huge computation and memory consumption. This paper presents a novel hierarchical local–global framework based on Transformer network for point clouds, named TNPC. TNPC contains two serial Stages implementing downsampling operation, and each Stage is composed of a local feature extracting (LFE) block and a global feature extracting (GFE) block, which can reduce computation and memory consumption obviously. LFE block consists of two parallel branches, namely Transformer branch and shared multilayer perceptron (SMLP) branch, which are designed to learn relevant feature of any two points and local high-dimensional semantic features of each point between sampling centroid and its neighborhoods, respectively. The proposed two parallel branches not only improve the feature extraction effect, but also reduce the computation and memory consumption. GFE block consists of a center point contact (CPC) module and a global point cloud transformer layer (PCTL) module, which can improve the effect of global features extracting without adding the number of parameters and computation. The performance of our method is validated experimentally on ModelNet40 and ScanObjectNN datasets. Our method improves the mAcc accuracy to 91.6% and 79.8% on the ModelNet40 dataset and ScanObjectNN dataset, respectively. In terms of efficiency, our method leads to a significant reduction, with only 4.73MB parameters and only 1.91GB FLOPs. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on classification accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Krim完成签到 ,获得积分10
56秒前
1分钟前
天边道士发布了新的文献求助10
1分钟前
Ara关闭了Ara文献求助
1分钟前
1分钟前
悦耳亦云完成签到 ,获得积分10
2分钟前
思源应助mellow采纳,获得30
3分钟前
HTniconico完成签到 ,获得积分10
3分钟前
3分钟前
Claudia发布了新的文献求助10
3分钟前
Claudia完成签到,获得积分10
4分钟前
4分钟前
sinmden发布了新的文献求助10
4分钟前
4分钟前
爱桃子完成签到,获得积分10
5分钟前
5分钟前
Owen应助爱桃子采纳,获得10
5分钟前
5分钟前
kemin_jin发布了新的文献求助10
5分钟前
Jj7完成签到,获得积分10
5分钟前
aowulan完成签到 ,获得积分10
6分钟前
JamesPei应助happyxuexi采纳,获得10
6分钟前
6分钟前
科研通AI5应助Lin2019采纳,获得10
6分钟前
happyxuexi完成签到,获得积分20
6分钟前
happyxuexi发布了新的文献求助10
6分钟前
震动的凡柔完成签到,获得积分10
6分钟前
6分钟前
Lin2019发布了新的文献求助10
6分钟前
7分钟前
充电宝应助Tiger采纳,获得10
8分钟前
NexusExplorer应助风华正茂采纳,获得10
8分钟前
8分钟前
Tiger发布了新的文献求助10
8分钟前
8分钟前
9分钟前
Tiger完成签到,获得积分10
9分钟前
喜看财经完成签到,获得积分10
9分钟前
Ara关注了科研通微信公众号
9分钟前
9分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360094
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810348
科研通“疑难数据库(出版商)”最低求助积分说明 766033