Carboxymethyl chitosan-based hydrogel-Janus nanofiber scaffolds with unidirectional storage-drainage of biofluid for accelerating full-thickness wound healing
杰纳斯
纳米纤维
壳聚糖
伤口愈合
材料科学
复合材料
化学工程
纳米技术
外科
医学
工程类
作者
Xinhao Chen,Hui Huang,Xinru Song,Ting Dong,Jiafei Yu,Jieyan Xu,Rui Cheng,Tingting Cui,Jun Li
Self-pumping wound scaffolds designed for directional biofluid transport are extensively investigated. They efficiently extract excessive biofluids from wounds, while maintaining an optimally humid wound environment, thus facilitating rapid wound healing. However, the existing designed scaffolds are insufficiently focused on stimulating the hydrophobic layer at the wound site, thereby exacerbating inflammation and impeding the wound healing process. Herein, we engineered and fabricated a hydrophilic-hydrophobic-hydrophilic sandwich-structured hydrogel-Janus nanofiber scaffold (NFS) employing a Layer-by-Layer (LbL) method. This scaffold comprises a hydrophilic carboxymethyl chitosan/silver (CMCS-Ag) hydrogel component in conjunction with a poly(caprolactone)/poly(caprolactone)-poly(citric acid)-co-ε-polylysine (PCL/PCL-PCE) Janus NFS. It is noteworthy that the hydrogel-Janus nanofiber scaffold not only demonstrates outstanding water absorption (202.2 %) and unidirectional biofluid transport capability but also possesses high breathability (308.663 m3/m2.h.kPa), appropriate pore size (6.7–7.5 μm), excellent tensile performance (270 ± 10 %), and superior mechanical strength (26.36 ± 1.77 MPa). Moreover, in vitro experimentation has convincingly demonstrated the impeccable biocompatibility of hydrogel-Janus NFS. The inherent dual-antibacterial properties in CMCS-Ag and PCE significantly augment fibroblast proliferation and migration. In vivo studies further underscore its capability to expedite wound healing by absorption and expulsion of wound exudates, thereby fostering collagen deposition and vascularization. As such, this work potentially provides fresh insights into the design and fabrication of multifunctional biomimetic scaffolds, holding immense potential in the medical field for efficient wound healing.