已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of Continuous ECG Segments - Performance Analysis of a Deep Learning Model

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 稳健性(进化) 深度学习 人工神经网络 多层感知器 机器学习 信号(编程语言) 数据挖掘 生物化学 基因 化学 程序设计语言
作者
Luís C. N. Barbosa,Diogo Lopes,Inês Escrivães,António H. J. Moreira,Vı́tor Carvalho,João L. Vilaça,Pedro Morais
标识
DOI:10.1109/embc40787.2023.10341151
摘要

Classification of electrocardiogram (ECG) signals plays an important role in the diagnosis of heart diseases. It is a complex and non-linear signal, which is the first option to preliminary identify specific pathologies/conditions (e.g., arrhythmias). Currently, the scientific community has proposed a multitude of intelligent systems to automatically process the ECG signal, through deep learning techniques, as well as machine learning, where this present high performance, showing state-of-the-art results. However, most of these models are designed to analyze the ECG signal individually, i.e., segment by segment. The scientific community states that to diagnose a pathology in the ECG signal, it is not enough to analyze a signal segment corresponding to the cardiac cycle, but rather an analysis of successive segments of cardiac cycles, to identify a pathological pattern.In this paper, an intelligent method based on a Convolutional Neural Network 1D paired with a Multilayer Perceptron (CNN 1D+MLP) was evaluated to automatically diagnose a set of pathological conditions, from the analysis of the individual segment of the cardiac cycle. In particular, we intend to study the robustness of the referred method in the analysis of several simultaneous ECG signal segments. Two ECG signal databases were selected, namely: MIT-BIH Arrhythmia Database (D1) and European ST-T Database (D2). The data was processed to create datasets with two, three and five segments in a row, to train and test the performance of the method. The method was evaluated in terms of classification metrics, such as: precision, recall, f1-score, and accuracy, as well as through the calculation of confusion matrices.Overall, the method demonstrated high robustness in the analysis of successive ECG signal segments, which we can conclude that it has the potential to detect anomalous patterns in the ECG signal. In the future, we will use this method to analyze the ECG signal coming in real-time, acquired by a wearable device, through a cloud system.Clinical Relevance—This study evaluates the potential of a deep learning method to classify one or several segments of the cardiac cycle and diagnose pathologies in ECG signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TTTT完成签到,获得积分20
刚刚
1秒前
Unicorn给Unicorn的求助进行了留言
1秒前
LYSM发布了新的文献求助30
3秒前
He发布了新的文献求助10
8秒前
He完成签到,获得积分10
15秒前
only完成签到 ,获得积分10
16秒前
李健的粉丝团团长应助Jeff采纳,获得10
18秒前
19秒前
尊敬的花卷完成签到 ,获得积分10
20秒前
Jasper应助木子李采纳,获得10
24秒前
小蟑螂完成签到,获得积分10
26秒前
温暖的鸿完成签到 ,获得积分10
28秒前
28秒前
复杂念梦完成签到 ,获得积分10
29秒前
搜集达人应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得10
31秒前
仙人殊恍惚完成签到,获得积分10
31秒前
努力发自然完成签到 ,获得积分10
32秒前
33秒前
lanrete完成签到,获得积分10
34秒前
Jeff发布了新的文献求助10
34秒前
36秒前
39秒前
无限发布了新的文献求助10
41秒前
想想蛋糕发布了新的文献求助10
43秒前
科研通AI2S应助TTTT采纳,获得10
46秒前
www完成签到 ,获得积分10
50秒前
51秒前
上官若男应助jam采纳,获得10
55秒前
二牛完成签到,获得积分10
1分钟前
1分钟前
酷波er应助xwz626采纳,获得10
1分钟前
petrichor完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
搜集达人应助韩思凝采纳,获得10
1分钟前
鸣蜩十三完成签到,获得积分10
1分钟前
无限完成签到,获得积分10
1分钟前
1分钟前
丸子完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4242091
求助须知:如何正确求助?哪些是违规求助? 3775597
关于积分的说明 11855945
捐赠科研通 3430423
什么是DOI,文献DOI怎么找? 1882681
邀请新用户注册赠送积分活动 934738
科研通“疑难数据库(出版商)”最低求助积分说明 841158