A novel Deep Reinforcement Learning based automated stock trading system using cascaded LSTM networks

计算机科学 强化学习 人工智能 证券交易所 机器学习 梯度升压 多层感知器 深度学习 股票市场指数 Boosting(机器学习) 股票市场 人工神经网络 财务 随机森林 生物 古生物学 经济
作者
Jie Zou,Jiashu Lou,Baohua Wang,Sixue Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122801-122801 被引量:13
标识
DOI:10.1016/j.eswa.2023.122801
摘要

Deep Reinforcement Learning (DRL) algorithms have been increasingly used to construct stock trading strategies, but they often face performance challenges when applied to financial data with low signal-to-noise ratios and unevenness, as these methods were originally designed for the gaming community. To address this issue, we propose a DRL-based stock trading system that leverages Cascaded Long Short-Term Memory (CLSTM-PPO Model) to capture the hidden information in the daily stock data. Our model adopts a cascaded structure with two stages of carefully designed deep LSTM networks: it uses one LSTM to extract the time-series features from a sequence of daily stock data in the first stage, and then the features extracted are fed to the agent in the reinforcement learning algorithm for training, while the actor and the critic in the agent also use a LSTM network. We conduct experiments on stock market datasets from four major indices: the Dow Jones Industrial index (DJI) in the US, the Shanghai Stock Exchange 50 (SSE50) in China, S&P BSE Sensex Index (SENSEX) in India, and the Financial Times Stock Exchange 100 (FTSE100) in the UK. We compare our model with several benchmark models, including: (i) a model based on a buy-and-hold strategy; (ii) a Proximal Policy Optimization (PPO) model with Multilayer Perceptron (MLP) policy; (iii) some up-to-date models like the MLP model, LSTM model, Light Gradient Boosting Machine (LGBM) model, and histogram-based gradient boosting model; and (iv) an ensemble strategy model. The experimental results show that our model outperforms the baseline models in several key metrics, such as cumulative returns, maximum earning rate, and average profitability per trade. The improvements range from 5% to 52%, depending on the metric and the stock index. This indicates that our proposed method is a promising way to build an automated stock trading system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jellorio发布了新的文献求助10
刚刚
刚刚
杜禹锋发布了新的文献求助10
刚刚
刚刚
科研通AI5应助嘻哈采纳,获得10
2秒前
酒酒发布了新的文献求助30
2秒前
2秒前
坚定的代芙完成签到,获得积分10
2秒前
科研通AI6应助大意的博采纳,获得10
2秒前
2秒前
3秒前
情怀应助Yuxin采纳,获得10
3秒前
3秒前
田様应助Lee采纳,获得10
3秒前
曼曼YouYou发布了新的文献求助10
3秒前
Hello应助科研人采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
ljxx完成签到 ,获得积分10
4秒前
情怀应助jellorio采纳,获得10
4秒前
科研通AI6应助正直的彩虹采纳,获得10
4秒前
5秒前
5秒前
kekao发布了新的文献求助10
5秒前
5秒前
5秒前
哈哈哈完成签到,获得积分10
6秒前
含蓄映冬发布了新的文献求助10
6秒前
天天快乐应助冷傲玫瑰采纳,获得10
6秒前
脑洞疼应助周洺宇采纳,获得10
7秒前
当归完成签到,获得积分10
7秒前
7秒前
8秒前
Gzl发布了新的文献求助10
8秒前
8秒前
炫酷的雨发布了新的文献求助10
9秒前
cgjj发布了新的文献求助10
9秒前
汤帅臣完成签到,获得积分10
9秒前
10秒前
柏承星关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4690313
求助须知:如何正确求助?哪些是违规求助? 4062388
关于积分的说明 12560647
捐赠科研通 3759999
什么是DOI,文献DOI怎么找? 2076561
邀请新用户注册赠送积分活动 1105294
科研通“疑难数据库(出版商)”最低求助积分说明 984029