A novel Deep Reinforcement Learning based automated stock trading system using cascaded LSTM networks

计算机科学 强化学习 人工智能 证券交易所 机器学习 梯度升压 多层感知器 深度学习 股票市场指数 Boosting(机器学习) 股票市场 人工神经网络 财务 随机森林 古生物学 经济 生物
作者
Jie Zou,Jiashu Lou,Baohua Wang,Sixue Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:242: 122801-122801 被引量:13
标识
DOI:10.1016/j.eswa.2023.122801
摘要

Deep Reinforcement Learning (DRL) algorithms have been increasingly used to construct stock trading strategies, but they often face performance challenges when applied to financial data with low signal-to-noise ratios and unevenness, as these methods were originally designed for the gaming community. To address this issue, we propose a DRL-based stock trading system that leverages Cascaded Long Short-Term Memory (CLSTM-PPO Model) to capture the hidden information in the daily stock data. Our model adopts a cascaded structure with two stages of carefully designed deep LSTM networks: it uses one LSTM to extract the time-series features from a sequence of daily stock data in the first stage, and then the features extracted are fed to the agent in the reinforcement learning algorithm for training, while the actor and the critic in the agent also use a LSTM network. We conduct experiments on stock market datasets from four major indices: the Dow Jones Industrial index (DJI) in the US, the Shanghai Stock Exchange 50 (SSE50) in China, S&P BSE Sensex Index (SENSEX) in India, and the Financial Times Stock Exchange 100 (FTSE100) in the UK. We compare our model with several benchmark models, including: (i) a model based on a buy-and-hold strategy; (ii) a Proximal Policy Optimization (PPO) model with Multilayer Perceptron (MLP) policy; (iii) some up-to-date models like the MLP model, LSTM model, Light Gradient Boosting Machine (LGBM) model, and histogram-based gradient boosting model; and (iv) an ensemble strategy model. The experimental results show that our model outperforms the baseline models in several key metrics, such as cumulative returns, maximum earning rate, and average profitability per trade. The improvements range from 5% to 52%, depending on the metric and the stock index. This indicates that our proposed method is a promising way to build an automated stock trading system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小手冰凉完成签到 ,获得积分10
刚刚
obaica完成签到,获得积分10
刚刚
明理听莲发布了新的文献求助10
1秒前
123456完成签到,获得积分10
1秒前
Chief完成签到,获得积分0
1秒前
3秒前
大方凌丝完成签到,获得积分10
4秒前
藜藜藜在乎你完成签到 ,获得积分10
4秒前
薛之谦完成签到,获得积分10
6秒前
科研通AI5应助松松松采纳,获得10
6秒前
汤雯慧完成签到,获得积分10
8秒前
诠释发布了新的文献求助10
10秒前
11秒前
17秒前
科研通AI5应助听话的捕采纳,获得10
18秒前
18秒前
默默完成签到,获得积分10
20秒前
情怀应助派大星采纳,获得10
20秒前
21秒前
包包琪完成签到 ,获得积分10
21秒前
22秒前
mang_er发布了新的文献求助30
23秒前
23秒前
松松松完成签到,获得积分10
26秒前
坚定的新之完成签到,获得积分10
27秒前
28秒前
慕子完成签到 ,获得积分10
28秒前
29秒前
二号发布了新的文献求助10
33秒前
诠释完成签到,获得积分10
34秒前
满意盈发布了新的文献求助10
35秒前
土豆酱发布了新的文献求助10
36秒前
37秒前
37秒前
orixero应助zhaoming采纳,获得10
37秒前
青柠发布了新的文献求助10
38秒前
40秒前
Steven24go发布了新的文献求助30
40秒前
40秒前
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802565
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337284
捐赠科研通 3064213
什么是DOI,文献DOI怎么找? 1682478
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010