Sequence modeling and design from molecular to genome scale with Evo

计算生物学 清脆的 基因组学 合成生物学 基因组 功能(生物学) DNA测序 生物 计算机科学 遗传学 基因
作者
Éric Nguyen,Michael Poli,Matthew G. Durrant,Armin W. Thomas,Brian Kang,Jeremy A. Sullivan,Madelena Y. Ng,Ashley Lewis,Aman Patel,Aaron Lou,Stefano Ermon,Stephen A. Baccus,Tina Hernandez‐Boussard,Christopher Ré,Patrick D. Hsu,Brian Hie
标识
DOI:10.1101/2024.02.27.582234
摘要

The genome is a sequence that completely encodes the DNA, RNA, and proteins that orchestrate the function of a whole organism. Advances in machine learning combined with massive datasets of whole genomes could enable a biological foundation model that accelerates the mechanistic understanding and generative design of complex molecular interactions. We report Evo, a genomic foundation model that enables prediction and generation tasks from the molecular to genome scale. Using an architecture based on advances in deep signal processing, we scale Evo to 7 billion parameters with a context length of 131 kilobases (kb) at single-nucleotide, byte resolution. Trained on whole prokaryotic genomes, Evo can generalize across the three fundamental modalities of the central dogma of molecular biology to perform zero-shot function prediction that is competitive with, or outperforms, leading domain-specific language models. Evo also excels at multi-element generation tasks, which we demonstrate by generating synthetic CRISPR-Cas molecular complexes and entire transposable systems for the first time. Using information learned over whole genomes, Evo can also predict gene essentiality at nucleotide resolution and can generate coding-rich sequences up to 650 kb in length, orders of magnitude longer than previous methods. Advances in multi-modal and multi-scale learning with Evo provides a promising path toward improving our understanding and control of biology across multiple levels of complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅槑完成签到 ,获得积分10
刚刚
能干哈密瓜完成签到,获得积分10
刚刚
1秒前
科研通AI6应助LiXiaomeng采纳,获得10
1秒前
给刘宇宁的粉丝一篇文献吧完成签到,获得积分10
3秒前
积极的哈密瓜给平常的兔子的求助进行了留言
3秒前
科研通AI6应助笔墨留香采纳,获得10
3秒前
Bonnie发布了新的文献求助10
3秒前
4秒前
why发布了新的文献求助10
5秒前
5秒前
Owen应助guojingjing采纳,获得10
6秒前
6秒前
周花花完成签到 ,获得积分10
6秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
小明应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得50
8秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
乐融融完成签到,获得积分10
9秒前
善学以致用应助TheYNJ采纳,获得10
10秒前
11秒前
11秒前
香香小熊发布了新的文献求助10
11秒前
隐形曼青应助u深度采纳,获得10
11秒前
科研通AI2S应助JF123_采纳,获得10
12秒前
小东西发布了新的文献求助30
12秒前
科研通AI6应助汉堡包采纳,获得10
13秒前
bk关注了科研通微信公众号
13秒前
13秒前
14秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241364
求助须知:如何正确求助?哪些是违规求助? 4408141
关于积分的说明 13721098
捐赠科研通 4277163
什么是DOI,文献DOI怎么找? 2347067
邀请新用户注册赠送积分活动 1344085
关于科研通互助平台的介绍 1302236