Using Machine Learning and Deep Learning Algorithms to Predict Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion

颈椎前路椎间盘切除融合术 机器学习 医学 椎间盘切除术 人工智能 椎间盘切除术 融合 脊柱融合术 颈椎 算法 计算机科学 外科 腰椎 腰椎 哲学 语言学 颈椎
作者
Rushmin Khazanchi,Anitesh Bajaj,Rohan Shah,Austin R. Chen,Samuel G. Reyes,Steven S. Kurapaty,Wellington K. Hsu,Alpesh A. Patel,Srikanth N. Divi
出处
期刊:Clinical spine surgery [Lippincott Williams & Wilkins]
卷期号:36 (3): 143-149 被引量:3
标识
DOI:10.1097/bsd.0000000000001443
摘要

Study Design: A retrospective cohort study from a multisite academic medical center. Objective: To construct, evaluate, and interpret a series of machine learning models to predict outcomes related to inpatient health care resource utilization for patients undergoing anterior cervical discectomy and fusion (ACDF). Summary of Background Data: Reducing postoperative health care utilization is an important goal for improving the delivery of surgical care and serves as a metric for quality assessment. Recent data has shown marked hospital resource utilization after ACDF surgery, including readmissions, and ED visits. The burden of postoperative health care use presents a potential application of machine learning techniques, which may be capable of accurately identifying at-risk patients using patient-specific predictors. Methods: Patients 18-88 years old who underwent ACDF from 2011 to 2021 at a multisite academic center and had preoperative lab values within 3 months of surgery were included. Outcomes analyzed included 90-day readmissions, postoperative length of stay, and nonhome discharge. Four machine learning models—Extreme Gradient Boosted Trees, Balanced Random Forest, Elastic-Net Penalized Logistic Regression, and a Neural Network—were trained and evaluated through the Area Under the Curve estimates. Feature importance scores were computed for the highest-performing model per outcome through model-specific metrics. Results: A total of 1026 cases were included in the analysis cohort. All machine learning models were predictive for outcomes of interest, with the Random Forest algorithm consistently demonstrating the strongest average area under the curve performance, with a peak performance of 0.84 for nonhome discharge. Important features varied per outcome, though age, body mass index, American Society of Anesthesiologists classification >2, and medical comorbidities were highly weighted in the studied outcomes. Conclusions: Machine learning models were successfully applied and predictive of postoperative health utilization after ACDF. Deployment of these tools can assist clinicians in determining high-risk patients. Level of Evidence: III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃脆脆鲨完成签到 ,获得积分10
1秒前
wanci应助斯文明杰采纳,获得10
2秒前
3秒前
wh完成签到,获得积分10
3秒前
义气易巧完成签到,获得积分10
4秒前
稀松完成签到,获得积分0
4秒前
感动梦寒完成签到,获得积分10
4秒前
5秒前
盒子发布了新的文献求助10
8秒前
彩色德天完成签到 ,获得积分10
8秒前
9秒前
Logom发布了新的文献求助10
9秒前
10秒前
充电宝应助包容的香菱采纳,获得10
13秒前
斯文明杰发布了新的文献求助10
13秒前
YanZhe完成签到,获得积分10
13秒前
子凡应助洁净的向南采纳,获得10
13秒前
hysmoment完成签到,获得积分10
13秒前
Hello应助hulala采纳,获得10
14秒前
博士发布了新的文献求助10
14秒前
丘比特应助小卡比采纳,获得10
15秒前
乐观的涵菱完成签到,获得积分10
17秒前
19秒前
转眼快十年完成签到,获得积分10
20秒前
20秒前
20秒前
俏皮的安萱完成签到 ,获得积分10
21秒前
梦华完成签到 ,获得积分10
21秒前
23秒前
阿姨洗铁路完成签到 ,获得积分10
23秒前
期待完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
科研通AI5应助Logom采纳,获得10
25秒前
25秒前
Hello应助mieao采纳,获得10
27秒前
123完成签到,获得积分10
27秒前
hulala发布了新的文献求助10
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385