Using Machine Learning and Deep Learning Algorithms to Predict Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion

颈椎前路椎间盘切除融合术 机器学习 医学 椎间盘切除术 人工智能 椎间盘切除术 融合 脊柱融合术 颈椎 算法 计算机科学 外科 腰椎 腰椎 哲学 语言学 颈椎
作者
Rushmin Khazanchi,Anitesh Bajaj,Rohan Shah,Austin R. Chen,Samuel G. Reyes,Steven S. Kurapaty,Wellington K. Hsu,Alpesh A. Patel,Srikanth N. Divi
出处
期刊:Clinical spine surgery [Lippincott Williams & Wilkins]
卷期号:36 (3): 143-149 被引量:10
标识
DOI:10.1097/bsd.0000000000001443
摘要

Study Design: A retrospective cohort study from a multisite academic medical center. Objective: To construct, evaluate, and interpret a series of machine learning models to predict outcomes related to inpatient health care resource utilization for patients undergoing anterior cervical discectomy and fusion (ACDF). Summary of Background Data: Reducing postoperative health care utilization is an important goal for improving the delivery of surgical care and serves as a metric for quality assessment. Recent data has shown marked hospital resource utilization after ACDF surgery, including readmissions, and ED visits. The burden of postoperative health care use presents a potential application of machine learning techniques, which may be capable of accurately identifying at-risk patients using patient-specific predictors. Methods: Patients 18-88 years old who underwent ACDF from 2011 to 2021 at a multisite academic center and had preoperative lab values within 3 months of surgery were included. Outcomes analyzed included 90-day readmissions, postoperative length of stay, and nonhome discharge. Four machine learning models—Extreme Gradient Boosted Trees, Balanced Random Forest, Elastic-Net Penalized Logistic Regression, and a Neural Network—were trained and evaluated through the Area Under the Curve estimates. Feature importance scores were computed for the highest-performing model per outcome through model-specific metrics. Results: A total of 1026 cases were included in the analysis cohort. All machine learning models were predictive for outcomes of interest, with the Random Forest algorithm consistently demonstrating the strongest average area under the curve performance, with a peak performance of 0.84 for nonhome discharge. Important features varied per outcome, though age, body mass index, American Society of Anesthesiologists classification >2, and medical comorbidities were highly weighted in the studied outcomes. Conclusions: Machine learning models were successfully applied and predictive of postoperative health utilization after ACDF. Deployment of these tools can assist clinicians in determining high-risk patients. Level of Evidence: III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让寻绿完成签到,获得积分10
3秒前
3秒前
CAOHOU应助甜美冥茗采纳,获得10
4秒前
4秒前
zheng-homes发布了新的文献求助10
7秒前
wqpdbr完成签到,获得积分10
7秒前
7秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
10秒前
ccm发布了新的文献求助10
10秒前
隐形曼青应助Achilles采纳,获得10
13秒前
13秒前
13秒前
13秒前
郭子仪发布了新的文献求助10
14秒前
14秒前
15秒前
wqpdbr发布了新的文献求助10
16秒前
17秒前
18秒前
Raven发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
小花排草发布了新的文献求助10
20秒前
青松完成签到,获得积分10
23秒前
杨旸发布了新的文献求助10
23秒前
25秒前
科研通AI5应助大绿豆采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4183236
求助须知:如何正确求助?哪些是违规求助? 3719226
关于积分的说明 11722537
捐赠科研通 3398473
什么是DOI,文献DOI怎么找? 1864704
邀请新用户注册赠送积分活动 922331
科研通“疑难数据库(出版商)”最低求助积分说明 834005