Using Machine Learning and Deep Learning Algorithms to Predict Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion

颈椎前路椎间盘切除融合术 机器学习 医学 椎间盘切除术 人工智能 椎间盘切除术 融合 脊柱融合术 颈椎 算法 计算机科学 外科 腰椎 腰椎 哲学 语言学 颈椎
作者
Rushmin Khazanchi,Anitesh Bajaj,Rohan Shah,Austin R Chen,Samuel G. Reyes,Steven Kurapaty,Wellington K. Hsu,Alpesh A. Patel,Srikanth N. Divi
出处
期刊:Clinical spine surgery [Lippincott Williams & Wilkins]
卷期号:36 (3): 143-149 被引量:10
标识
DOI:10.1097/bsd.0000000000001443
摘要

Study Design: A retrospective cohort study from a multisite academic medical center. Objective: To construct, evaluate, and interpret a series of machine learning models to predict outcomes related to inpatient health care resource utilization for patients undergoing anterior cervical discectomy and fusion (ACDF). Summary of Background Data: Reducing postoperative health care utilization is an important goal for improving the delivery of surgical care and serves as a metric for quality assessment. Recent data has shown marked hospital resource utilization after ACDF surgery, including readmissions, and ED visits. The burden of postoperative health care use presents a potential application of machine learning techniques, which may be capable of accurately identifying at-risk patients using patient-specific predictors. Methods: Patients 18-88 years old who underwent ACDF from 2011 to 2021 at a multisite academic center and had preoperative lab values within 3 months of surgery were included. Outcomes analyzed included 90-day readmissions, postoperative length of stay, and nonhome discharge. Four machine learning models—Extreme Gradient Boosted Trees, Balanced Random Forest, Elastic-Net Penalized Logistic Regression, and a Neural Network—were trained and evaluated through the Area Under the Curve estimates. Feature importance scores were computed for the highest-performing model per outcome through model-specific metrics. Results: A total of 1026 cases were included in the analysis cohort. All machine learning models were predictive for outcomes of interest, with the Random Forest algorithm consistently demonstrating the strongest average area under the curve performance, with a peak performance of 0.84 for nonhome discharge. Important features varied per outcome, though age, body mass index, American Society of Anesthesiologists classification >2, and medical comorbidities were highly weighted in the studied outcomes. Conclusions: Machine learning models were successfully applied and predictive of postoperative health utilization after ACDF. Deployment of these tools can assist clinicians in determining high-risk patients. Level of Evidence: III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笑点解析举报qls123求助涉嫌违规
1秒前
bocai完成签到,获得积分10
2秒前
3秒前
栗子发布了新的文献求助10
4秒前
尹怀薇完成签到,获得积分10
5秒前
5秒前
科研通AI5应助西瓜太郎君采纳,获得10
5秒前
6秒前
6秒前
yjz完成签到,获得积分10
7秒前
8秒前
TTT完成签到,获得积分10
8秒前
89757完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
英俊的铭应助尹怀薇采纳,获得30
11秒前
ljjxd完成签到,获得积分10
12秒前
13秒前
熠云发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
脑洞疼应助汪澳采纳,获得10
13秒前
13秒前
我不接受发布了新的文献求助10
14秒前
14秒前
89757发布了新的文献求助10
14秒前
Cara完成签到,获得积分10
14秒前
Hello应助珪璋采纳,获得10
14秒前
17720485712完成签到,获得积分10
15秒前
大方的凝竹完成签到,获得积分10
16秒前
16秒前
NexusExplorer应助潺潺流水采纳,获得10
16秒前
许锦完成签到,获得积分10
17秒前
18秒前
别紫发布了新的文献求助20
18秒前
HH发布了新的文献求助10
18秒前
19秒前
Hello应助丙队长采纳,获得10
19秒前
ra1n驳回了慕青应助
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705