Anatomy-Aware Deep Unrolling for Task-Oriented Acceleration of Multi-Contrast MRI

计算机科学 加速度 对比度(视觉) 任务(项目管理) 人工智能 计算机视觉 磁共振成像 循环展开 放射科 医学 物理 经典力学 经济 编译程序 管理 程序设计语言
作者
Yuzhu He,Chunfeng Lian,M. Xiao,Fengkui Ju,Chao Zou,Zongben Xu,Jianhua Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3568157
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) plays a crucial role in clinical practice. However, its performance is hindered by long scanning times and the isolation between image acquisition and downstream clinical diagnoses/treatments. Despite the activated research on accelerated MC-MRI, few existing studies prioritize personalized imaging tailored to individual patient characteristics and clinical needs. That is, the current approach often aims to enhance overall image quality, disregarding the specific pathologies or anatomical regions that are of particular interest to clinicians. To tackle this challenge, we propose an anatomy-aware unrolling-based deep network, dubbed as A2MC-MRI, offering promising interpretability and learning capacity for fast MC-MRI catering to downstream clinical needs. The network is unfolded from the iterative algorithm designed for a task-oriented MC-MRI reconstruction model. Specifically, to enhance concurrent MC-MRI of specific targets of interest (TOIs), the model integrates a learnable group sparsity with an anatomyaware denoising prior. Within the anatomy-aware denoising prior, a segmentation network is involved to provide critical location information for TOI-enhanced denoising. Finally, such an unrolled network is jointly learned with k-space sampling patterns for task-oriented MC-MR reconstruction. Comprehensive evaluations on two public benchmarks as well as an in-house dataset demonstrate that our A2MCMRI led to state-of-the-art performance in MC-MRI reconstruction under high acceleration rates, featuring notable enhancements in TOI imaging quality. The code will be available at https://github.com/ladderlab-xjtu/A2MC-MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情夏彤完成签到,获得积分10
刚刚
烂漫的筮发布了新的文献求助10
刚刚
1秒前
明亮巨人完成签到 ,获得积分10
2秒前
chuxia发布了新的文献求助10
3秒前
萌萌哒完成签到 ,获得积分10
3秒前
hairgod发布了新的文献求助10
3秒前
momo发布了新的文献求助10
4秒前
4秒前
Jasper应助六沉采纳,获得10
6秒前
AhhHuang应助momo采纳,获得10
8秒前
zzx完成签到,获得积分10
8秒前
SYLH应助momo采纳,获得10
8秒前
科研小白发布了新的文献求助10
8秒前
海城好人完成签到,获得积分10
9秒前
平常的毛豆应助洪焕良采纳,获得10
9秒前
豆子发布了新的文献求助10
9秒前
11秒前
学渣小林完成签到,获得积分10
11秒前
领导范儿应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
田様应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
非而者厚应助科研通管家采纳,获得10
14秒前
Alex应助科研通管家采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
打打应助WQ采纳,获得10
15秒前
15秒前
17秒前
英俊的铭应助pp采纳,获得10
18秒前
所所应助lijunying采纳,获得30
18秒前
19秒前
19秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958