Computed Tomography‐Based Radiomics and Genomics Analyses for Survival Prediction of Stage III Unresectable Non‐Small Cell Lung Cancer Treated With Definitive Chemoradiotherapy and Immunotherapy

放化疗 肺癌 肿瘤科 阶段(地层学) 内科学 无线电技术 癌症 免疫疗法 队列 生物 医学 放射科 古生物学
作者
Yuxin Geng,Tianwen Yin,Yikun Li,Kunshan He,Bingwen Zou,Jinming Yu,Xiao Sun,Tao Zhang,Feifei Teng
出处
期刊:Molecular Carcinogenesis [Wiley]
标识
DOI:10.1002/mc.23883
摘要

The standard therapy for locally unresectable advanced non-small cell lung cancer (NSCLC) is comprised of chemoradiotherapy (CRT) before immunotherapy (IO) consolidation. However, how to predict treatment outcomes and recognize patients that will benefit from IO remain unclear. This study aimed to identify prognostic biomarkers by integrating computed tomography (CT)-based radiomics and genomics. Specifically, our research involved 165 patients suffering from unresectable Stage III NSCLC. Cohort 1 (IO following CRT) was divided into D1 (n = 74), D2 (n = 32), and D3 (n = 26) sets, and the remaining 33 patients treated with CRT alone were grouped in D4. According to the CT images of primary tumor regions, radiomic features were analyzed through the least absolute shrinkage and selection operator (LASSO) regression. The Rad-score was figured out to forecast the progression-free survival (PFS). According to the Rad-score, patients were divided into high and low risk groups. Next-generation sequencing was implemented on peripheral blood and tumor tissue samples in the D3 and D4 cohorts. The maximum somatic allele frequency (MSAF) about circulating tumor DNA levels was assessed. Mismatch repair and switching/sucrose non-fermenting signaling pathways were significantly enriched in the low-risk group compared to the high-risk group (p < 0.05). Moreover, patients with MSAF ≥ 1% and those showing a decrease in MSAF after treatment significantly benefited from IO. This study developed a radiomics model predicting PFS after CRT and IO in Stage III NSCLC and constructed a radio-genomic map to identify underlying biomarkers, supplying valuable insights for cancer biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CAOHOU应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
xzy998应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
六轮完成签到 ,获得积分10
6秒前
Ad14发布了新的文献求助30
8秒前
打卡下班应助修仙中采纳,获得30
8秒前
搜集达人应助陈露采纳,获得30
8秒前
8秒前
9秒前
12秒前
秦锡莲完成签到,获得积分10
12秒前
巴巴爸爸发布了新的文献求助10
14秒前
Nicole发布了新的文献求助10
14秒前
延胡索完成签到,获得积分10
16秒前
gaoziwei发布了新的文献求助10
17秒前
英姑应助张二十八采纳,获得10
19秒前
Nicole完成签到,获得积分10
20秒前
dx发布了新的文献求助10
20秒前
WZH完成签到 ,获得积分10
20秒前
onlyone应助liu采纳,获得30
22秒前
李健应助Nugget采纳,获得10
24秒前
flysky120发布了新的文献求助10
28秒前
Hedda发布了新的文献求助10
28秒前
萨伊普发布了新的文献求助10
31秒前
32秒前
32秒前
33秒前
安详小丸子完成签到,获得积分10
33秒前
Lily完成签到,获得积分10
34秒前
童童童发布了新的文献求助10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132512
求助须知:如何正确求助?哪些是违规求助? 3669181
关于积分的说明 11603503
捐赠科研通 3366193
什么是DOI,文献DOI怎么找? 1849371
邀请新用户注册赠送积分活动 913050
科研通“疑难数据库(出版商)”最低求助积分说明 828413