Machine learning based on multiplatform tests assists in subtype classification of mature B‐cell neoplasms

亚型 特征选择 一致性(知识库) 选择(遗传算法) 构造(python库) 特征(语言学) 计算机科学 人工智能 机器学习 计算生物学 流式细胞术 生物 免疫学 程序设计语言 哲学 语言学
作者
Jun-Wei Lin,Yafei Mu,Lingling Liu,Yuhuan Meng,Tao Chen,Xijie Fan,Jiecheng Yuan,Maoting Shen,Jianhua Pan,Ren Yu-xia,Shihui Yu,Yuxin Chen
出处
期刊:British Journal of Haematology [Wiley]
卷期号:206 (1): 224-234
标识
DOI:10.1111/bjh.19934
摘要

Summary Mature B‐cell neoplasms (MBNs) are clonal proliferative diseases encompassing over 40 subtypes. The WHO classification (morphology, immunology, cytogenetics and molecular biology) provides comprehensive diagnostic understandings. However, MBN subtyping relies heavily on the expertise of clinicians and pathologists, and differences in clinical experience can lead to variations in subtyping efficiency and consistency. Additionally, due to the diversity in genetic backgrounds, machine learning (ML) models constructed based on Western populations may not be suitable for Chinese MBN patients. To construct a highly accurate classification model suitable for Chinese MBN patients, we first developed an ML model based on next‐generation sequencing (NGS) from Chinese MBN patients, with an accuracy of 0.719, which decreased to 0.707 after model feature selection. Another ML model based on NGS and tumour cell size had an accuracy of 0.715, which increased to 0.763 after model feature selection. Both models were more accurate than models constructed using Western MBN patient databases. Furthermore, by adding flow cytometry for CD5 and CD10, the accuracy reached 0.864, which further improved to 0.872 after model feature selection. These models are accessible via an open‐access website. Overall, ML models incorporating multiplatform tests can serve as practical auxiliary tools for MBN subtype classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助令狐剑通采纳,获得10
刚刚
飞阳完成签到,获得积分10
1秒前
3秒前
CipherSage应助木雨采纳,获得30
4秒前
karean发布了新的文献求助10
5秒前
7秒前
9秒前
WD完成签到,获得积分10
9秒前
毛毛发布了新的文献求助10
9秒前
文静的猕猴桃完成签到,获得积分10
9秒前
科研通AI5应助小许会更好采纳,获得10
11秒前
慢慢完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
LL完成签到,获得积分10
14秒前
令狐剑通发布了新的文献求助10
15秒前
HE完成签到,获得积分10
15秒前
rajvsvj完成签到,获得积分10
16秒前
16秒前
16秒前
万仁杰完成签到 ,获得积分10
17秒前
彭于晏应助毛毛采纳,获得10
17秒前
星月相遂完成签到,获得积分10
18秒前
18秒前
懒羊羊发布了新的文献求助10
19秒前
21秒前
qiulong发布了新的文献求助10
21秒前
务实青筠发布了新的文献求助10
23秒前
璐宝完成签到,获得积分10
23秒前
24秒前
善学以致用应助张欣童666采纳,获得10
24秒前
酷波er应助小王同学采纳,获得10
25秒前
26秒前
吟诵月光完成签到,获得积分10
27秒前
27秒前
MRM发布了新的文献求助10
29秒前
1234完成签到,获得积分10
30秒前
动漫大师发布了新的文献求助10
31秒前
31秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451