Origins of synergy in multilipid lubrication

润滑 脂质双层 边界润滑 润滑性 双层 材料科学 生物物理学 背景(考古学) 化学 复合材料 生物化学 生物 古生物学
作者
Yifeng Cao,Di Jin,Nir Kampf,Jacob Klein
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (47) 被引量:3
标识
DOI:10.1073/pnas.2408223121
摘要

Lipid bilayers, ubiquitous in living systems, form lubricious boundary layers in aqueous media, with broad relevance for biolubrication, especially in mechanically stressed environments such as articular cartilage in joints, as well as for modifying material interfacial properties. Model studies have revealed efficient lubricity by single-component lipid bilayers; synovial joints, however (e.g. hips and knees), comprise over a hundred different lipids, raising the question of whether this is natural redundancy or whether it confers any lubrication benefits. Here, we examine lubrication by progressively more complex mixtures of lipids representative of those in joints, using a surface forces balance at physiologically relevant salt concentrations and pressures. We find that different combinations of such lipids differ very significantly in the robustness of the bilayers to hemifusion under physiological loads (when lubrication breaks down), indicating a clear lubrication synergy afforded by multiple lipid types in the bilayers. Insight into the origins of this synergy is provided by detailed molecular dynamics simulations of potential profiles for the formation of stalks, the essential precursors of hemifusion, between bilayers of the different lipid mixtures used in the experiments. These reveal how bilayer hemifusion-and thus lubrication breakdown-depends on the detailed lipid bilayer composition, through the corresponding separation into domains that are better able to resist stalk formation. Our results shed light on the role of lipid-type proliferation in biolubrication synergy, point to improved treatment modalities for common joint diseases such as osteoarthritis, and indicate how lipid-based interfacial modification in a materials context may be optimized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊完成签到,获得积分10
刚刚
谨慎的擎宇完成签到,获得积分10
6秒前
科研通AI2S应助kyrie采纳,获得10
8秒前
小熊饼干完成签到,获得积分10
14秒前
qiao应助王志芬采纳,获得10
17秒前
脑洞疼应助优秀藏鸟采纳,获得30
20秒前
22秒前
23秒前
25秒前
26秒前
肖恩发布了新的文献求助10
28秒前
钠钾蹦发布了新的文献求助10
31秒前
aurora完成签到 ,获得积分10
31秒前
nb完成签到,获得积分10
31秒前
活力毛豆完成签到 ,获得积分10
33秒前
袁钰琳完成签到 ,获得积分10
36秒前
JiayanLee完成签到,获得积分10
36秒前
SciGPT应助钠钾蹦采纳,获得10
36秒前
lwl666完成签到,获得积分10
38秒前
Goodenough完成签到 ,获得积分10
38秒前
xiaoE完成签到,获得积分10
39秒前
43秒前
43秒前
43秒前
星星要睡觉啦完成签到,获得积分10
43秒前
none完成签到,获得积分10
44秒前
陈列发布了新的文献求助10
44秒前
45秒前
wy.he应助科研通管家采纳,获得10
46秒前
46秒前
46秒前
Hanzhiding发布了新的文献求助10
46秒前
共享精神应助Steven采纳,获得30
46秒前
47秒前
wxx发布了新的文献求助10
47秒前
49秒前
欣喜亚男发布了新的文献求助10
52秒前
52秒前
哎哟很烦完成签到,获得积分10
53秒前
Misea发布了新的文献求助30
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549