POS0925 AUTOMATIC SCORING OF ULTRASOUND SYNOVIAL HYPERTROPHY IN RHEUMATOID ARTHRITIS THROUGH INTEGRATING MULTIPLE CONVOLUTIONAL NEURAL NETWORK MODELS

医学 滑膜炎 卷积神经网络 类风湿性关节炎 人工智能 手腕 肘部 指间关节 模式识别(心理学) 放射科 内科学 计算机科学 外科
作者
Chung‐Chien Huang,Peng Huang,Kai‐Jieh Yeo,Chih‐Jung Chang,Kuo-Chen Wu,Wanjin Hong,Shun‐Hsyung Chang,Joung‐Liang Lan,Da‐Yuan Chen,Chia‐Hung Kao
标识
DOI:10.1136/annrheumdis-2023-eular.4166
摘要

Background

The OMERACT-EULAR Synovitis Scoring (OESS) system is worldwide used to evaluate arthritis severity on ultrasound (US) images. Because of inter-observer and intra-observer variability, deep learning (DL) has been applied in high-quality image interpretation and analysis. Previous studies mostly focused on Doppler US (DUS) classification by convolutional neural network (CNN), which could provide objective assessment. However, the reports of DL intervention in grey scale (GS) US image automatic measurements are limited.

Objectives

The aim of this study was to develop an integrated multiple CNN model in precise scoring GS US images from rheumatoid arthritis (RA) patients.

Methods

The standard US images from patients of RA were retrospectively selected by three 10-years US experienced rheumatologist together and were graded according to the OESS system. Six different joints data were taken, including proximal interphalangeal, metacarpophalangeal, wrist, elbow, knee and ankle joints. We conducted the DL model integrating three binary CNNs to predict four-class GS US scoring (Figure 1). The accuracy of the trained model was tested by an independent test data.

Results

Total 678 images from 447 patients of RA were used in this study. These images were divided into training (n=611) and testing (n=67) sets. The integrated multiple CNNs model could achieve a four-class accuracy of 77.6%. The individual accuracy of grades 0, 1, 2 and 3 were 68.4%, 77.3%, 73.3% and 100%, respectively (Table 1). Furthermore, we found that adding on anatomic site parameters or labeling areas of interest would establish a better average area under curve (AUC) with 92.6% and 89.0%.

Conclusion

Our study suggests the possibility of using the integrated multiple CNNs model in grading synovial hypertrophy of RA, which is critical in RA healthcare. External validation would be required to confirm the predictive ability of this model.

References

[1]D’Agostino MA et al. RMD Open. 2017 Jul 11;3(1):e000428. [2]Andersen JKH et al. RMD Open. 2019 Mar 30;5(1):e000891. [3]Christensen ABH et al. Ann Rheum Dis. 2020 Sep;79(9):1189-1193. [4]Shin Y et al. Ultrasonography. 2021 Jan;40(1):30-44. [5]Zhou Z et al. Patterns (N Y). 2022 Sep 29;3(10):100592.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助故里有兮木采纳,获得10
1秒前
陳.完成签到 ,获得积分10
1秒前
tianxiong完成签到,获得积分10
3秒前
4秒前
波风水门发布了新的文献求助20
5秒前
Timo干物类完成签到,获得积分10
6秒前
法侣完成签到,获得积分10
7秒前
彭于晏应助虚拟的惜筠采纳,获得10
7秒前
8秒前
9秒前
缥缈纲发布了新的文献求助10
10秒前
嘻嘻嘻发布了新的文献求助10
14秒前
阿斯披粼完成签到,获得积分10
15秒前
17秒前
鱼王木木完成签到,获得积分10
17秒前
大模型应助缥缈纲采纳,获得10
17秒前
雨前知了完成签到,获得积分10
17秒前
李健的小迷弟应助modesty采纳,获得10
18秒前
20秒前
FashionBoy应助波风水门采纳,获得10
20秒前
CodeCraft应助一方通行采纳,获得10
21秒前
21秒前
赘婿应助鱼王木木采纳,获得10
22秒前
希望天下0贩的0应助追风采纳,获得10
24秒前
24秒前
27秒前
Jasper应助谨慎的乐松采纳,获得10
27秒前
谦让寒云完成签到 ,获得积分10
27秒前
27秒前
27秒前
modesty完成签到,获得积分10
27秒前
27秒前
28秒前
浩哥要strong完成签到,获得积分10
30秒前
天空没有极限完成签到,获得积分10
30秒前
Star完成签到 ,获得积分10
31秒前
modesty发布了新的文献求助10
31秒前
一方通行发布了新的文献求助10
31秒前
阳光发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774