Survival prediction in pancreatic cancer by attention-driven feature extraction on histopathology whole slide images: a multi-cohort validation

组织病理学 比例危险模型 计算机科学 胰腺癌 人工智能 队列 Lasso(编程语言) 胰腺 肿瘤科 生存分析 癌症 机器学习 医学 病理 内科学 万维网
作者
Gustavo Pineda,Olivia K. Krebs,Alvaro Sandino,Eduardo Romero,Pallavi Tiwari
标识
DOI:10.1117/12.3008549
摘要

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis. Despite efforts to improve therapy outcomes in PDAC, overall survival remains at 2 to 5 years following initial diagnosis. To date, there are no established predictive or prognostic biomarkers for PDAC tumors. The availability of digitized H&E stained whole slide images (WSI) has led to an uptake in deep learning-based approaches toward comprehensive, automatic interrogation of tumor-specific attributes for disease diagnosis and prognosis. However, a significant challenge with the interrogation of large WSIs (gigabytes in size) is that only a small portion of the tissue (i.e. ROIs) contains information pertinent to diagnosis or prognosis. In this work, we investigated whether "highattention" ROIs (i.e. patch regions) identified by an attention-driven model to differentiate tumor from benign regions, may also be associated with survival outcomes in PDAC patients. The attention model was developed using a total of n = 461 WSI of H&E-stained pancreatic tumors, from two public repositories. Our approach first identifies attention maps (i.e. ROIs) using clustering-constrained-attention multiple-instance learning (CLAM), on WSI labeled as PDAC versus benign pancreas. Subsequently, the learned attention maps are employed within a LASSO regularized Cox-hazard proportional model to distinguish between high and low survival-risk groups of PDAC patients. Results were evaluated via a log-rank test and compared with established demographic variables (age, sex, race) to predict survival risk. While individual demographic variables did not demonstrate significant differences in survival risk, the attention-driven WSI features yielded significant stratification of low and highrisk groups in both the training (p = 0.0014, Hazard Ratio (HR), 2.0 (95 % Confidence Interval (CI) 1.3 -3.1)) and the test set (p = 0.0012 HR = 2.0 (95 % CI 1.3 -2.6)). Following a large, multi-institutional validation, our deep-learning approach may allow for designing more precise prognostic and predictive histopathological biomarkers for PDAC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ashley发布了新的文献求助10
4秒前
番番完成签到,获得积分10
6秒前
fan完成签到 ,获得积分10
7秒前
9秒前
高是个科研狗完成签到 ,获得积分10
11秒前
大个应助Gakay采纳,获得10
11秒前
12秒前
fafa发布了新的文献求助10
12秒前
dennisysz发布了新的文献求助10
15秒前
15秒前
是否发布了新的文献求助10
16秒前
17秒前
mia005应助郭振鹏采纳,获得100
20秒前
xiaixax完成签到,获得积分10
22秒前
24秒前
25秒前
方1111发布了新的文献求助10
30秒前
31秒前
爱笑千万完成签到 ,获得积分20
33秒前
科研通AI5应助melenda采纳,获得10
34秒前
35秒前
葛鲁发布了新的文献求助10
35秒前
36秒前
结实凌瑶完成签到 ,获得积分10
37秒前
君君发布了新的文献求助10
39秒前
39秒前
星辰大海应助DreamMaker采纳,获得10
39秒前
bkagyin应助是否采纳,获得10
39秒前
lbt完成签到,获得积分20
40秒前
Gakay发布了新的文献求助10
40秒前
43秒前
科研通AI5应助小ZZ采纳,获得10
45秒前
48秒前
香蕉觅云应助hyg采纳,获得10
51秒前
塔吉普雷克矛盾体完成签到,获得积分10
52秒前
田様应助给好评采纳,获得10
52秒前
lbt发布了新的文献求助30
52秒前
52秒前
53秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133