Insight into dehydrogenation mechanism of methanol to aromatics over GaO+/HZSM-5: Which is the active center, Lewis acid site or Brønsted−Lewis synergistic site?

脱氢 化学 异构化 碳离子 路易斯酸 催化作用 光化学 活动站点 活动中心 药物化学 环己烯 有机化学
作者
Jiale Han,Wen‐Bin Chen,Jing Wang,Lixia Ling,Yang Zhang,Xiaohua Shen,Xiaofeng Li,Riguang Zhang,Baojun Wang
出处
期刊:Microporous and Mesoporous Materials [Elsevier BV]
卷期号:372: 113115-113115 被引量:2
标识
DOI:10.1016/j.micromeso.2024.113115
摘要

The mechanisms of dehydrogenation reactions as important processes in methanol to aromatics (MTA) have been controversial. Recent work on the active center for dehydrogenation at either Lewis acid site (LAS) or Brønsted−Lewis (B−L) acid synergistic site is a matter. The dehydrogenation processes on L−acid site (GaO+) or B−L acid site (H+−GaO+) over GaO+/HZSM-5 with different Lewis acid locations for n-hexene to 1,5-hexadiene, as well as cyclohexene to benzene have been researched by applying the density functional theory (DFT) method. The results reflect that active center of dehydrogenation reactions is B−L acid synergistic site through B−L acid synergy mechanism. All elementary steps including C−H bond activation, the formation of H2, hydrogen transfer as well as the regeneration of B−acid site are easy to proceed. However, the isomerization for carbonium ions from GaO+ to skeleton oxygen of zeolites is relatively difficult. The analysis shows that isomerization is influenced by the structural and electronic properties of carbonium ions chemisorbed on zeolites. Lewis acid strength of GaO+/HZSM-5 and energy gap between HOMO and LUMO on adsorption complexes are appropriate descriptors for the C−H bond activation. The rate constants analysis indicates that increasing temperature is more favorable for C−H bond activation. Further considering that C−H bond activation occurred preferentially than isomerization, it could be a critical initial step to primarily screen catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助RUI采纳,获得20
1秒前
1秒前
1秒前
CipherSage应助翊嘉采纳,获得10
1秒前
2秒前
Andrea0899发布了新的文献求助10
2秒前
2秒前
Cloud完成签到,获得积分10
3秒前
3秒前
4秒前
lizh187完成签到 ,获得积分10
4秒前
金枪鱼完成签到,获得积分10
6秒前
Yuuuu发布了新的文献求助10
6秒前
大气如雪发布了新的文献求助10
7秒前
7秒前
无花果应助jinshijie采纳,获得10
7秒前
7秒前
8秒前
Andrea0899完成签到,获得积分10
9秒前
多多发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
lijiajun完成签到,获得积分10
12秒前
13秒前
13秒前
聪慧小霜应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
李健的小迷弟应助研究生采纳,获得10
14秒前
Syuku发布了新的文献求助10
14秒前
赘婿应助红烧鼠蹄采纳,获得10
15秒前
Nolan完成签到,获得积分10
15秒前
RUI发布了新的文献求助20
17秒前
18秒前
九三发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4339344
求助须知:如何正确求助?哪些是违规求助? 3848190
关于积分的说明 12017726
捐赠科研通 3489338
什么是DOI,文献DOI怎么找? 1915027
邀请新用户注册赠送积分活动 958008
科研通“疑难数据库(出版商)”最低求助积分说明 858280