Remarkable upgrade of hydrogen evolution activity up to 40.8 folds and mechanistic investigation of expediting charge transfer achieved by Bi2O3-modified TiO2 photocatalyst

催交 光催化 电荷(物理) 化学 升级 光化学 材料科学 催化作用 计算机科学 有机化学 物理 工程类 量子力学 操作系统 系统工程
作者
Xinjuan Du,Jindou Hu,Jing Xie,Zhenjiang Lu,Kun Wang,Baolin Liu,Yali Cao
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:64: 842-852
标识
DOI:10.1016/j.ijhydene.2024.03.359
摘要

Targeting on significantly promoting the hydrogen generation activity of titanium dioxide-based photocatalysts without the modification of noble metals by a straightforward synthetic strategy, simultaneously unveiling the photocatalytic mechanism of expedited charge transfer in photocatalyst are necessary but remains challenging. In this work, Bi2O3-modified TiO2 nanocomposite materials were directly synthesized via employing a solid-state synthesis method at mild conditions. The Bi2O3–modified TiO2 photocatalyst enable to achieve a remarkable hydrogen generation rate, dramatically outperforming commercial titanium oxide by 40.8 times. Photoelectric measurements were well matched with the broaden light absorption range and expedited charge transfer in photocatalyst, which are primarily responsible for the high-performance photocatalytic hydrogen evolution. The partially formed metallic Bi serves as a mediator between Bi2O3 and commercial TiO2 to facilitate photoexcited carriers' separation and migration. The density functional theory simulations were further executed to calculate the differential charge distribution. It successfully unveils the electron transferring property (0.97 e−) in photocatalysts during photocatalytic process, which is well-matched with experiments derived from photoelectric measurements and uncovers the underlying photocatalytic mechanism. This work offers an efficient strategy for modifying the TiO2-based photocatalysts and dramatically achieving high-performance photocatalytic hydrogen evolution activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hm发布了新的文献求助10
2秒前
2秒前
今后应助高冷的呆呆鱼采纳,获得10
2秒前
许小亮完成签到,获得积分20
2秒前
高挑的小蕊完成签到,获得积分10
2秒前
星辰大海应助hsp采纳,获得10
3秒前
香蕉觅云应助三岁采纳,获得10
3秒前
4秒前
han完成签到,获得积分10
4秒前
coconut发布了新的文献求助10
4秒前
枫老板发布了新的文献求助10
4秒前
AX发布了新的文献求助30
4秒前
深情安青应助hutian采纳,获得10
5秒前
星辰大海应助瘦瘦的饼干采纳,获得10
5秒前
WWW完成签到 ,获得积分10
5秒前
柏林寒冬应助顾让采纳,获得10
5秒前
丘比特应助洺全采纳,获得10
5秒前
6秒前
顾矜应助爱笑芝采纳,获得10
6秒前
feike完成签到,获得积分10
6秒前
6秒前
洁净的尔容应助xi采纳,获得10
6秒前
不一样的烟火完成签到,获得积分10
7秒前
8秒前
草莓大恐龙完成签到,获得积分10
8秒前
Zx发布了新的文献求助10
8秒前
8秒前
8秒前
隐形曼青应助蓝莓采纳,获得10
8秒前
8秒前
9秒前
sad发布了新的文献求助10
10秒前
Seciy完成签到 ,获得积分10
10秒前
清秀颜演发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4237610
求助须知:如何正确求助?哪些是违规求助? 3771626
关于积分的说明 11845236
捐赠科研通 3427722
什么是DOI,文献DOI怎么找? 1881192
邀请新用户注册赠送积分活动 933554
科研通“疑难数据库(出版商)”最低求助积分说明 840491