亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the Utility of Large Language Models for Phenotype-Driven Gene Prioritization in Rare Genetic Disorder Diagnosis.

计算机科学 机器学习 人工智能 优先次序 排名(信息检索) 任务(项目管理) 数据挖掘 管理 经济 管理科学
作者
Junyoung Kim,Jingye Yang,Kai Wang,Chunhua Weng,Cong Liu
出处
期刊:Cornell University - arXiv 被引量:1
标识
摘要

Phenotype-driven gene prioritization is a critical process in the diagnosis of rare genetic disorders for identifying and ranking potential disease-causing genes based on observed physical traits or phenotypes. While traditional approaches rely on curated knowledge graphs with phenotype-gene relations, recent advancements in large language models have opened doors to the potential of AI predictions through extensive training on diverse corpora and complex models. This study conducted a comprehensive evaluation of five large language models, including two Generative Pre-trained Transformers series, and three Llama2 series, assessing their performance across three key metrics: task completeness, gene prediction accuracy, and adherence to required output structures. Various experiments explored combinations of models, prompts, input types, and task difficulty levels. Our findings reveal that even the best-performing LLM, GPT-4, achieved an accuracy of 16.0%, which still lags behind traditional bioinformatics tools. Prediction accuracy increased with the parameter/model size. A similar increasing trend was observed for the task completion rate, with complicated prompts more likely to increase task completeness in models smaller than GPT-4. However, complicated prompts are more likely to decrease the structure compliance rate, but no prompt effects on GPT-4. Compared to HPO term-based input, LLM was also able to achieve better than random prediction accuracy by taking free-text input, but slightly lower than with the HPO input. Bias analysis showed that certain genes, such as MECP2, CDKL5, and SCN1A, are more likely to be top-ranked, potentially explaining the variances observed across different datasets. This study provides valuable insights into the integration of LLMs within genomic analysis, contributing to the ongoing discussion on the utilization of advanced LLMs in clinical workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心如意完成签到 ,获得积分10
33秒前
年轻千愁完成签到 ,获得积分10
1分钟前
TEY完成签到 ,获得积分10
1分钟前
所所应助schnappi采纳,获得10
1分钟前
1分钟前
schnappi完成签到,获得积分20
1分钟前
schnappi发布了新的文献求助10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
2分钟前
James发布了新的文献求助10
2分钟前
James完成签到,获得积分10
2分钟前
传奇3应助wise111采纳,获得10
2分钟前
3分钟前
wise111发布了新的文献求助10
3分钟前
mmyhn完成签到,获得积分10
3分钟前
在水一方应助wise111采纳,获得10
3分钟前
dashi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
wise111发布了新的文献求助10
3分钟前
3分钟前
wise111发布了新的文献求助10
4分钟前
KaK发布了新的文献求助10
4分钟前
科研通AI5应助wise111采纳,获得10
4分钟前
4分钟前
wise111发布了新的文献求助10
4分钟前
wise111发布了新的文献求助10
5分钟前
岩下松风完成签到,获得积分10
5分钟前
烟花应助wise111采纳,获得10
6分钟前
绫艾完成签到,获得积分20
6分钟前
6分钟前
行走完成签到,获得积分10
6分钟前
wise111发布了新的文献求助10
6分钟前
烟花应助wise111采纳,获得10
6分钟前
Akim应助科研通管家采纳,获得10
6分钟前
7分钟前
wise111发布了新的文献求助10
7分钟前
ding应助wise111采纳,获得10
7分钟前
Ji完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468