MSAO: A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications

全局优化 烧蚀 工程类 计算机科学 航空航天工程 系统工程 数学优化 气象学 数学 地理 算法
作者
Yaning Xiao,Hao Cui,Abdelazim G. Hussien,Fatma A. Hashim
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102464-102464 被引量:16
标识
DOI:10.1016/j.aei.2024.102464
摘要

Snow Ablation Optimizer (SAO) is a cutting-edge nature-inspired meta-heuristic technique that mimics the sublimation and melting processes of snow in its quest for optimal solution to complex problems. While SAO has demonstrated competitive performance in comparison to classical algorithms in early research, it still exhibits certain limitations including low convergence accuracy, a lack of population diversity, and premature convergence, particularly when addressing high-dimensional intricate challenges. To mitigate the above-mentioned adverse factors, this paper introduces a novel variant of SAO with featuring four enhancement strategies collectively referred as MSAO. Firstly, the good point set initialization strategy is employed to generate a uniformly distributed high-quality population, which facilitates the algorithm to enter the appropriate search domain rapidly. Secondly, the greedy selection method is adopted to reserve better candidate solutions for the next iteration, thus striking a robust exploration–exploitation balance. Then, the Differential Evolution (DE) scheme is introduced to expand the search range and enhance the exploitation capability of the algorithm for higher convergence accuracy. Finally, to reduce the risk of falling into local optima, a Dynamic Lens Opposition-Based Learning (DLOBL) strategy is developed to operate on the current optimal solution dimension by dimension. With the blessing of these strategies, the optimization performance of MSAO is comprehensively improved. To comprehensively evaluate the optimization performance of MSAO, a series of numerical optimization experiments are conducted using the IEEE CEC2017 & CEC2022 test sets. In the IEEE CEC2017 experiments, the optimal crossover probability CR=0.8 is determined and the effectiveness of each improvement strategy is ablatively verified. MSAO is compared with the basic SAO, various state-of-the-art optimizers, and CEC2017 champion algorithms in terms of solution accuracy, convergence speed, robustness, and scalability. In the IEEE CEC2022 experiments, MSAO is compared with some recently developed improved algorithms to further validate its superiority. The results demonstrate that MSAO has excellent overall optimization performance, with the smallest Friedman mean rankings of 1.66 and 1.25 on both test suites, respectively. In the majority of test cases, MSAO can provide more accurate and reliable solutions than other competitors. Furthermore, six realistic constrained engineering design challenges and one photovoltaic model parameter estimation issue are employed to demonstrate the practicality of MSAO. Our findings suggest that MSAO has excellent optimization capacity and broad application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安梦桃发布了新的文献求助10
刚刚
程云兮完成签到,获得积分10
1秒前
共享精神应助hhw采纳,获得10
3秒前
3秒前
3秒前
4秒前
一只小水母完成签到,获得积分10
4秒前
肝胆外科医生完成签到,获得积分10
5秒前
ss应助cst采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
典雅问寒应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
ZHou发布了新的文献求助10
10秒前
11秒前
11秒前
等待盼雁发布了新的文献求助10
13秒前
bc应助如意的书南采纳,获得30
14秒前
15秒前
wtbo发布了新的文献求助10
15秒前
16秒前
16秒前
SciGPT应助写得出发的中采纳,获得10
17秒前
17秒前
hhw发布了新的文献求助10
19秒前
oia发布了新的文献求助10
20秒前
吴晓敏完成签到 ,获得积分10
20秒前
wtbo完成签到,获得积分10
21秒前
甜甜圈发布了新的文献求助10
21秒前
Chem34发布了新的文献求助10
22秒前
共享精神应助只只呀采纳,获得10
22秒前
小白发布了新的文献求助10
25秒前
26秒前
科研通AI2S应助黎小静采纳,获得10
34秒前
36秒前
孤独尔安完成签到 ,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415