Occupant-centric dynamic heating and cooling loads simplified prediction model for urban community at energy planning stage

地铁列车时刻表 冷负荷 建筑围护结构 运动仿真 包络线(雷达) 能量(信号处理) 模拟 阶段(地层学) 能源规划 工程类 计算机科学 机械工程 气象学 热的 航空航天工程 可再生能源 古生物学 雷达 统计 物理 数学 电气工程 空调 生物 操作系统
作者
Shuqin Chen,Yurui Huang,Xiyong Zhang,Frédéric Kuznik,Xi He,Yuhang Ma,Yuxuan Cai
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:90: 104406-104406 被引量:13
标识
DOI:10.1016/j.scs.2023.104406
摘要

Simplified and accurate prediction of dynamic heating and cooling loads is the basis for urban energy planning and optimal operation of integrated urban energy systems. Majority existed urban community heating and cooling loads prediction models focus on the effects of building physics, weather conditions, and construction features, barely consider the impact of occupant presence rate, operating schedule, and internal heat gain on heating and cooling loads, which affects the prediction accuracy. Thus, aiming to get the balance of simplification and accuracy, an occupant-centric prediction model of dynamic heating and cooling loads for urban community at energy planning stage with simplified calculation principles, reduced input parameters, improved simulation accuracy, and preserved characteristics of the individual building in the community was proposed. Based on the previously developed building envelope simplification model, internal heat gain modules and operating schedule modules were developed. After verifying the prediction accuracy of the model by comparison with EnergyPlus software, the model was applied to a typical university campus. Case study analysis shows that this model can accurately predict dynamic space heating and cooling loads of urban community with simplified inputs at energy planning stage, which provides theoretical support and convenience for optimizing the urban energy prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子皮发布了新的文献求助10
刚刚
cdercder应助11111111111采纳,获得10
1秒前
图图应助稳重老魏采纳,获得10
1秒前
郝郝发布了新的文献求助10
1秒前
1秒前
飞鸿踏雪泥完成签到 ,获得积分0
1秒前
小卫完成签到,获得积分10
2秒前
小雪人完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
虚拟的惜筠完成签到,获得积分10
2秒前
彭于晏应助李伟采纳,获得10
2秒前
俊逸的代双关注了科研通微信公众号
3秒前
胖胖橘发布了新的文献求助10
3秒前
3秒前
5秒前
JUGG完成签到,获得积分10
5秒前
5秒前
吨吨喝水发布了新的文献求助10
5秒前
希望天下0贩的0应助Paula_xr采纳,获得10
5秒前
zengyiyong完成签到,获得积分10
5秒前
六个核桃完成签到,获得积分10
5秒前
CaoJing完成签到 ,获得积分10
6秒前
6秒前
123完成签到,获得积分20
6秒前
小雪人发布了新的文献求助10
6秒前
雪茶完成签到 ,获得积分10
6秒前
疯狂的888完成签到,获得积分20
6秒前
lizi发布了新的文献求助10
7秒前
ZIJUNZHAO完成签到 ,获得积分10
7秒前
小白应助柒号采纳,获得10
7秒前
7秒前
传奇3应助兔兔采纳,获得10
7秒前
搜集达人应助Daixi_Chen采纳,获得10
8秒前
8秒前
酷酷的滕发布了新的文献求助20
8秒前
柚子皮完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
顺利的伊完成签到,获得积分10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031