MAda-Net: Model-Adaptive Deep Learning Imaging for SAR Tomography

计算机科学 解算器 深度学习 超参数 人工智能 能量(信号处理) 迭代重建 算法 计算机视觉 统计 数学 程序设计语言
作者
Yan Wang,Changhao Liu,Rui Zhu,Minkun Liu,Zegang Ding,Tao Zeng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:5
标识
DOI:10.1109/tgrs.2023.3239405
摘要

The compressive sensing (CS)-based tomographic SAR (TomoSAR) 3-D imaging method has the shortcoming of low efficiency, mainly represented in two aspects: first, the CS solver requires iterative calculation and hence is computationally expensive; second, the CS solver needs hyperparameters’ selection, which commonly requires cost-inefficient try-and-error attempts. Recently, the iterative CS solver is suggested to be replaced by a deep learning network for a tremendous processing speed improvement. However, the existing deep-learning-based TomoSAR imaging algorithms suffer from the problem of model inadaptability, i.e., being inadaptive to the observation model and the signal energy model and hence is low accuracy. This article proposes a new model-adaptive network (MAda-Net) to implement deep-learning-based TomoSAR 3-D imaging with a much improved processing accuracy. First, a new adaptive model-solving (AMS) module is introduced to solve the problem of the observation model inconsistency between the real spatially varying one and the approximately fixed one used by the network. Second, a new adaptive threshold-activation (ATC) module is introduced to solve the problem of signal energy model inconsistency between the real backscattered echo and the simulated echo for network training. The effectiveness of the proposed method has been verified by the computer simulations and the real unmanned aerial vehicle (UAV) SAR experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蘑菇屋应助kookery采纳,获得10
刚刚
酷酷的小鸽子完成签到 ,获得积分10
刚刚
弱于一般人类完成签到,获得积分10
1秒前
阳光向日葵完成签到,获得积分10
1秒前
sunyexuan发布了新的文献求助10
2秒前
Links完成签到,获得积分10
2秒前
2秒前
bainannan完成签到,获得积分10
2秒前
3秒前
完美的太兰完成签到,获得积分10
3秒前
Quan完成签到,获得积分10
3秒前
3秒前
黑妖完成签到,获得积分10
4秒前
水穷云起完成签到,获得积分10
4秒前
ZJY34359完成签到,获得积分10
5秒前
5秒前
5秒前
星星又累发布了新的文献求助10
6秒前
Hemin完成签到,获得积分10
6秒前
amity发布了新的文献求助10
7秒前
7秒前
DQY发布了新的文献求助10
7秒前
中科院化学完成签到,获得积分10
7秒前
7秒前
信念发布了新的文献求助30
7秒前
8秒前
红星路吃饼子的派大星完成签到 ,获得积分10
8秒前
小脚丫完成签到,获得积分10
9秒前
ZJY34359发布了新的文献求助10
9秒前
10秒前
舒适店员完成签到 ,获得积分10
10秒前
alex发布了新的文献求助10
11秒前
ganzhongxin完成签到,获得积分10
11秒前
12秒前
款款完成签到 ,获得积分10
12秒前
12秒前
12秒前
zhouzy完成签到,获得积分10
13秒前
鼓励男孩发布了新的文献求助10
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857