强化学习
控制理论(社会学)
计算机科学
参数统计
增益调度
李雅普诺夫函数
停留时间
有界函数
理论(学习稳定性)
调度(生产过程)
贝尔曼方程
最优控制
高超音速飞行
车辆动力学
Lyapunov稳定性
数学优化
控制(管理)
高超音速
工程类
数学
人工智能
非线性系统
机器学习
统计
物理
数学分析
航空航天工程
医学
汽车工程
临床心理学
量子力学
作者
Wanjiku A. Makumi,Max L. Greene,Zachary I. Bell,Brendan Bialy,Rushikesh Kamalapurkar,Warren E. Dixon
摘要
A hierarchical reinforcement learning-based control strategy is introduced to facilitate state regulation for a hypersonic vehicle. To account for time-varying aerothermoelastic parameters in real-time, a hierarchical switching policy selects a subsystem from a larger set of potential subsystems. The selection depends on an approximation of the optimal value function of each subsystem. Integral concurrent learning is used to approximate the parametric uncertainties in each dynamical system. The approximate optimal control policy is proven to converge to a neighborhood of the optimal control policy. Uniformly ultimately bounded stability of each subsystem and stability of the overall switched system are proven using a Lyapunov-based stability analysis and dwell-time analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI