The detection and attribution of extreme reductions in vegetation growth across the global land surface

生物群落 热带 干旱 温带气候 环境科学 气候学 植被(病理学) 优势(遗传学) 气候变化 地理 自然地理学 纬度 森林砍伐(计算机科学) 生态系统 生态学 地质学 基因 病理 生物 医学 化学 程序设计语言 生物化学 计算机科学 大地测量学
作者
Hui Yang,Seth M. Munson,Chris Huntingford,Nuno Carvalhais,Alan K. Knapp,Xiangyi Li,Josep Peñuelas,Jakob Zscheischler,Anping Chen
出处
期刊:Global Change Biology [Wiley]
卷期号:29 (8): 2351-2362 被引量:21
标识
DOI:10.1111/gcb.16595
摘要

Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单薄的大白菜真实的钥匙完成签到,获得积分10
1秒前
1秒前
科研通AI5应助秋裤掉了采纳,获得10
1秒前
qunli发布了新的文献求助10
2秒前
柚子皮发布了新的文献求助10
2秒前
cdercder应助11111111111采纳,获得10
3秒前
图图应助稳重老魏采纳,获得10
3秒前
郝郝发布了新的文献求助10
3秒前
3秒前
飞鸿踏雪泥完成签到 ,获得积分0
3秒前
小卫完成签到,获得积分10
4秒前
小雪人完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
虚拟的惜筠完成签到,获得积分10
4秒前
彭于晏应助李伟采纳,获得10
4秒前
俊逸的代双关注了科研通微信公众号
5秒前
胖胖橘发布了新的文献求助10
5秒前
5秒前
7秒前
JUGG完成签到,获得积分10
7秒前
7秒前
吨吨喝水发布了新的文献求助10
7秒前
希望天下0贩的0应助Paula_xr采纳,获得10
7秒前
zengyiyong完成签到,获得积分10
7秒前
六个核桃完成签到,获得积分10
7秒前
CaoJing完成签到 ,获得积分10
8秒前
8秒前
123完成签到,获得积分20
8秒前
小雪人发布了新的文献求助10
8秒前
雪茶完成签到 ,获得积分10
8秒前
疯狂的888完成签到,获得积分20
8秒前
lizi发布了新的文献求助10
9秒前
ZIJUNZHAO完成签到 ,获得积分10
9秒前
小白应助柒号采纳,获得10
9秒前
9秒前
传奇3应助兔兔采纳,获得10
9秒前
搜集达人应助Daixi_Chen采纳,获得10
10秒前
10秒前
酷酷的滕发布了新的文献求助20
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031