Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations

人工智能 基本事实 卷积神经网络 计算机科学 模式识别(心理学) 嵌入 图像(数学) 关系(数据库) 机器学习 人工神经网络 粒子(生态学) 监督学习 数据挖掘 海洋学 地质学
作者
Hossein Salami,Shubing Wang,Daniel Skomski
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:112 (3): 771-778 被引量:10
标识
DOI:10.1016/j.xphs.2022.10.010
摘要

Imaging is commonly used as a characterization method in the pharmaceuticals industry, including for quantifying subvisible particles in solid and liquid formulations. Extracting information beyond particle size, such as classifying morphological subpopulations, requires some type of image analysis method. Suggested methods to classify particles have been based on pre-determined morphological features or use supervised training of convolutional neural networks to learn image representations in relation to ground truth labels. Complications arising from highly complex morphologies, unforeseen classes, and time-consuming preparation of ground truth labels, are some of the challenges faced by these methods. In this work, we evaluate the application of a self-supervised contrastive learning method in studying particle images from therapeutic solutions. Unlike with supervised training, this approach does not require ground truth labels and representations are learned by comparing particle images and their augmentations. This method provides a fast and easily implementable tool of coarse screening for morphological attribute assessment. Furthermore, our analysis shows that in cases with relatively balanced datasets, a small subset of an image dataset is sufficient to train a convolutional neural network encoder capable of extracting useful image representations. It is also demonstrated that particle classes typically observed in protein solutions administered by pre-filled syringes emerge as separated clusters in the encoder's embedding space, facilitating performing tasks such as training weakly-supervised classifiers or identifying the presence of new subpopulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的熊完成签到,获得积分10
1秒前
zsh完成签到,获得积分10
2秒前
5秒前
henxi完成签到,获得积分10
6秒前
9秒前
linjane发布了新的文献求助10
10秒前
跳跃楼房完成签到 ,获得积分10
10秒前
loglm完成签到,获得积分10
11秒前
科研通AI5应助LLJ采纳,获得10
11秒前
你的完成签到 ,获得积分10
12秒前
香蕉觅云应助笑点低的靳采纳,获得10
13秒前
赘婿应助xx采纳,获得30
14秒前
devilito发布了新的文献求助30
14秒前
科研通AI5应助herdwind采纳,获得10
16秒前
17秒前
腼腆的康完成签到 ,获得积分10
17秒前
21秒前
kk完成签到,获得积分10
22秒前
22秒前
HughWang完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
ttracc完成签到 ,获得积分10
24秒前
herdwind发布了新的文献求助10
27秒前
xx发布了新的文献求助30
27秒前
28秒前
YMkaiye发布了新的文献求助10
30秒前
小小完成签到,获得积分10
30秒前
herdwind完成签到,获得积分10
34秒前
38秒前
xx完成签到,获得积分10
44秒前
45秒前
peiling发布了新的文献求助10
45秒前
YOLO完成签到 ,获得积分10
47秒前
47秒前
YMkaiye完成签到,获得积分20
49秒前
秘密学习完成签到 ,获得积分10
49秒前
50秒前
zywii发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440