TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers

人工智能 编码器 分割 变压器 计算机科学 图像分割 计算机视觉 卷积神经网络 模式识别(心理学) 工程类 电气工程 电压 操作系统
作者
Jieneng Chen,Jieru Mei,Xianhang Li,Yongyi Lu,Qihang Yu,Qingyue Wei,Xiangde Luo,Yutong Xie,Ehsan Adeli,Yan Wang,Matthew P. Lungren,Shaoting Zhang,Lei Xing,Le Lü,Alan Yuille,Yuyin Zhou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103280-103280 被引量:78
标识
DOI:10.1016/j.media.2024.103280
摘要

Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-Net face limitations in modeling long-range dependencies. To address this, Transformers designed for sequence-to-sequence predictions have been integrated into medical image segmentation. However, a comprehensive understanding of Transformers' self-attention in U-Net components is lacking. TransUNet, first introduced in 2021, is widely recognized as one of the first models to integrate Transformer into medical image analysis. In this study, we present the versatile framework of TransUNet that encapsulates Transformers' self-attention into two key modules: (1) a Transformer encoder tokenizing image patches from a convolution neural network (CNN) feature map, facilitating global context extraction, and (2) a Transformer decoder refining candidate regions through cross-attention between proposals and U-Net features. These modules can be flexibly inserted into the U-Net backbone, resulting in three configurations: Encoder-only, Decoder-only, and Encoder+Decoder. TransUNet provides a library encompassing both 2D and 3D implementations, enabling users to easily tailor the chosen architecture. Our findings highlight the encoder's efficacy in modeling interactions among multiple abdominal organs and the decoder's strength in handling small targets like tumors. It excels in diverse medical applications, such as multi-organ segmentation, pancreatic tumor segmentation, and hepatic vessel segmentation. Notably, our TransUNet achieves a significant average Dice improvement of 1.06% and 4.30% for multi-organ segmentation and pancreatic tumor segmentation, respectively, when compared to the highly competitive nn-UNet, and surpasses the top-1 solution in the BrasTS2021 challenge. 2D/3D Code and models are available at https://github.com/Beckschen/TransUNet and https://github.com/Beckschen/TransUNet-3D, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助纪鹏飞采纳,获得10
1秒前
Xu关注了科研通微信公众号
3秒前
4秒前
东邪西毒加任我行完成签到,获得积分10
6秒前
bc应助rrrrroxie采纳,获得40
7秒前
Sunshine完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
CipherSage应助刘搞笑采纳,获得10
9秒前
10秒前
Aries完成签到 ,获得积分10
14秒前
犹豫紫丝发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
tier3完成签到,获得积分10
21秒前
21秒前
我以為忘了想念完成签到 ,获得积分10
22秒前
helly完成签到,获得积分10
23秒前
23秒前
24秒前
ariaooo完成签到,获得积分10
25秒前
25秒前
26秒前
liu发布了新的文献求助10
27秒前
科研通AI2S应助默默忆山采纳,获得10
30秒前
sure发布了新的文献求助10
30秒前
Orange应助liu采纳,获得10
31秒前
奋斗的荆发布了新的文献求助10
32秒前
zjw发布了新的文献求助10
32秒前
顺利的丹妗完成签到,获得积分10
34秒前
LWJ完成签到 ,获得积分10
39秒前
40秒前
在水一方应助甜美无剑采纳,获得10
42秒前
chen发布了新的文献求助10
42秒前
骨科小手完成签到,获得积分10
42秒前
机灵的雁蓉完成签到 ,获得积分10
43秒前
45秒前
骨科小手发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415