Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks

聚类分析 降维 计算机科学 自编码 瓶颈 人工智能 数据挖掘 高维数据聚类 可扩展性 图形 数据类型 人工神经网络 模式识别(心理学) 机器学习 理论计算机科学 数据库 程序设计语言 嵌入式系统
作者
Li Xu,Z M Li,Jiaxu Ren,Shuaipeng Liu,Yiming Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108921-108921
标识
DOI:10.1016/j.compbiomed.2024.108921
摘要

Single-cell RNA sequencing (scRNA-seq) is the sequencing technology of a single cell whose expression reflects the overall characteristics of the individual cell, facilitating the research of problems at the cellular level. However, the problems of scRNA-seq such as dimensionality reduction processing of massive data, technical noise in data, and visualization of single-cell type clustering cause great difficulties for analyzing and processing scRNA-seq data. In this paper, we propose a new single-cell data analysis model using denoising autoencoder and multi-type graph neural networks (scDMG), which learns cell-cell topology information and latent representation of scRNA-seq data. scDMG introduces the zero-inflated negative binomial (ZINB) model into a denoising autoencoder (DAE) to perform dimensionality reduction and denoising on the raw data. scDMG integrates multiple-type graph neural networks as the encoder to further train the preprocessed data, which better deals with various types of scRNA-seq datasets, resolves dropout events in scRNA-seq data, and enables preliminary classification of scRNA-seq data. By employing TSNE and PCA algorithms for the trained data and invoking Louvain algorithm, scDMG has better dimensionality reduction and clustering optimization. Compared with other mainstream scRNA-seq clustering algorithms, scDMG outperforms other state-of-the-art methods in various clustering performance metrics and shows better scalability, shorter runtime, and great clustering results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gen_cexon发布了新的文献求助10
刚刚
CWNU_HAN应助科研通管家采纳,获得30
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得30
1秒前
大个应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
CallitWYW应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
3秒前
周周完成签到 ,获得积分10
4秒前
5秒前
科研通AI5应助甜甜的满天采纳,获得30
5秒前
英俊白莲发布了新的文献求助10
6秒前
感动澜完成签到,获得积分10
6秒前
wick完成签到,获得积分10
8秒前
娃哈哈发布了新的文献求助10
9秒前
湖以应助王ml采纳,获得10
9秒前
fangchenxi完成签到,获得积分10
10秒前
wy.he举报lxr求助涉嫌违规
11秒前
共享精神应助wick采纳,获得10
13秒前
闾丘志泽发布了新的文献求助10
13秒前
FashionBoy应助WFLLL采纳,获得10
14秒前
无花果应助YOLO采纳,获得10
14秒前
个性书翠发布了新的文献求助10
14秒前
Kirito应助沐风采纳,获得10
14秒前
14秒前
lm完成签到,获得积分10
16秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844081
求助须知:如何正确求助?哪些是违规求助? 3386398
关于积分的说明 10545151
捐赠科研通 3107144
什么是DOI,文献DOI怎么找? 1711453
邀请新用户注册赠送积分活动 824113
科研通“疑难数据库(出版商)”最低求助积分说明 774478