Learning Joint 2-D and 3-D Graph Diffusion Models for Complete Molecule Generation

反向 生成模型 图形 算法 标量(数学) 计算机科学 生成语法 人工智能 数学 理论计算机科学 几何学
作者
Han Huang,Leilei Sun,Bowen Du,Weifeng Lyu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11857-11871 被引量:9
标识
DOI:10.1109/tnnls.2024.3416328
摘要

Designing new molecules is essential for drug discovery and material science. Recently, deep generative models that aim to model molecule distribution have made promising progress in narrowing down the chemical research space and generating high-fidelity molecules. However, current generative models only focus on modeling 2-D bonding graphs or 3-D geometries, which are two complementary descriptors for molecules. The lack of ability to jointly model them limits the improvement of generation quality and further downstream applications. In this article, we propose a joint 2-D and 3-D graph diffusion model (JODO) that generates geometric graphs representing complete molecules with atom types, formal charges, bond information, and 3-D coordinates. To capture the correlation between 2-D molecular graphs and 3-D geometries in the diffusion process, we develop a diffusion graph transformer (DGT) to parameterize the data prediction model that recovers the original data from noisy data. The DGT uses a relational attention mechanism that enhances the interaction between node and edge representations. This mechanism operates concurrently with the propagation and update of scalar attributes and geometric vectors. Our model can also be extended for inverse molecular design targeting single or multiple quantum properties. In our comprehensive evaluation pipeline for unconditional joint generation, the experimental results show that JODO remarkably outperforms the baselines on the QM9 and GEOM-Drugs datasets. Furthermore, our model excels in few-step fast sampling, as well as in inverse molecule design and molecular graph generation. Our code is provided in https://github.com/GRAPH-0/JODO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王佳豪发布了新的文献求助10
1秒前
Orange应助YJ采纳,获得10
1秒前
顾矜应助我不是笨蛋采纳,获得10
2秒前
3秒前
3秒前
兔兔兔应助傻傻的修洁采纳,获得10
3秒前
完美世界应助专注的可乐采纳,获得10
3秒前
称心道消完成签到,获得积分20
4秒前
4秒前
SiriusWolf完成签到,获得积分10
4秒前
彭于晏应助plant采纳,获得10
5秒前
活泼的孤云完成签到,获得积分10
5秒前
朱朱朱完成签到,获得积分10
6秒前
6秒前
嘻嘻嘻完成签到 ,获得积分10
7秒前
文明8发布了新的文献求助10
7秒前
Susabi完成签到 ,获得积分10
7秒前
立na发布了新的文献求助10
7秒前
7秒前
sunrase发布了新的文献求助10
8秒前
9秒前
9秒前
小月亮发布了新的文献求助10
9秒前
10秒前
科研通AI6应助爪人猫采纳,获得10
11秒前
汉堡包应助难过的谷芹采纳,获得50
11秒前
卡奇Mikey完成签到,获得积分10
11秒前
13秒前
采花大盗发布了新的文献求助20
13秒前
13秒前
lin完成签到,获得积分10
13秒前
ff发布了新的文献求助10
13秒前
13秒前
三三完成签到,获得积分10
13秒前
旮旯发布了新的文献求助10
15秒前
zyy完成签到,获得积分10
16秒前
16秒前
自由灵安发布了新的文献求助10
17秒前
上官若男应助yyy2025采纳,获得20
17秒前
小月亮完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520913
求助须知:如何正确求助?哪些是违规求助? 3963079
关于积分的说明 12283471
捐赠科研通 3626648
什么是DOI,文献DOI怎么找? 1995825
邀请新用户注册赠送积分活动 1032143
科研通“疑难数据库(出版商)”最低求助积分说明 922326