Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies

抗生素 抗生素耐药性 环境修复 钥匙(锁) 污染 环境科学 污染 微生物学 生态学 生物
作者
Ke Zhao,Shenghe Liu,Yimeng Feng,Fengxiang Li
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:947: 174517-174517 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.174517
摘要

In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助ajinjin采纳,获得10
1秒前
3秒前
bkagyin应助徐1采纳,获得10
3秒前
认真初之发布了新的文献求助10
3秒前
3秒前
小鱼完成签到,获得积分10
3秒前
箫笛完成签到 ,获得积分10
4秒前
无聊的静竹完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
科研虫完成签到,获得积分10
7秒前
8秒前
毕双洲完成签到,获得积分10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
七月流火应助科研通管家采纳,获得100
10秒前
小花排草应助科研通管家采纳,获得30
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
七月流火应助科研通管家采纳,获得100
10秒前
田様应助科研通管家采纳,获得10
10秒前
fancynancy应助科研通管家采纳,获得50
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
bkagyin应助尧开采纳,获得30
12秒前
12秒前
12秒前
liuyux发布了新的文献求助10
14秒前
大模型应助认真初之采纳,获得10
14秒前
chichi应助欧阳蛋蛋鸡采纳,获得30
14秒前
14秒前
14秒前
彭于晏应助坦率道之采纳,获得10
15秒前
15秒前
jinxixi完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154187
求助须知:如何正确求助?哪些是违规求助? 3690063
关于积分的说明 11656431
捐赠科研通 3382265
什么是DOI,文献DOI怎么找? 1856027
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094