已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:267: 110393-110393 被引量:64
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士奶盖有点咸完成签到 ,获得积分10
2秒前
4秒前
4秒前
岚12完成签到 ,获得积分10
5秒前
6秒前
考博上岸26完成签到 ,获得积分10
7秒前
科研通AI6应助xiaixax采纳,获得10
8秒前
xiaoshuwang发布了新的文献求助10
9秒前
Minn发布了新的文献求助10
9秒前
星晨发布了新的文献求助10
10秒前
11秒前
小白不会下载完成签到 ,获得积分10
11秒前
mike2012完成签到 ,获得积分10
12秒前
15秒前
满君清完成签到,获得积分10
16秒前
tuanheqi应助科研通管家采纳,获得150
16秒前
ceeray23应助科研通管家采纳,获得10
17秒前
GingerF应助科研通管家采纳,获得50
17秒前
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
GingerF应助科研通管家采纳,获得50
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
ceeray23应助科研通管家采纳,获得10
17秒前
17秒前
21完成签到 ,获得积分10
19秒前
Takahara2000完成签到,获得积分10
19秒前
Yon完成签到 ,获得积分0
20秒前
21秒前
22秒前
欢呼宛秋完成签到 ,获得积分10
22秒前
二氧化碳喲完成签到,获得积分10
22秒前
23秒前
moos完成签到 ,获得积分10
24秒前
CodeCraft应助不安易形采纳,获得10
25秒前
26秒前
满君清发布了新的文献求助10
26秒前
如意秋珊完成签到 ,获得积分10
26秒前
momo完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917283
求助须知:如何正确求助?哪些是违规求助? 4190539
关于积分的说明 13014643
捐赠科研通 3959938
什么是DOI,文献DOI怎么找? 2171055
邀请新用户注册赠送积分活动 1189117
关于科研通互助平台的介绍 1097128