BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:267: 110393-110393 被引量:52
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的电源完成签到 ,获得积分10
1秒前
1秒前
1秒前
ZHEN完成签到,获得积分20
1秒前
自由的未来完成签到,获得积分10
3秒前
可爱的函函应助Dsxxx采纳,获得10
3秒前
3秒前
3秒前
冷傲迎梦发布了新的文献求助10
5秒前
成懂事长发布了新的文献求助10
5秒前
789发布了新的文献求助10
5秒前
hou完成签到 ,获得积分10
5秒前
jcae123发布了新的文献求助10
7秒前
繁荣的忆文完成签到,获得积分10
8秒前
9秒前
听风完成签到,获得积分10
9秒前
深情的鞯完成签到,获得积分10
11秒前
Shan完成签到 ,获得积分10
11秒前
12秒前
Twinkle发布了新的文献求助10
15秒前
jcae123完成签到,获得积分10
16秒前
Epiphany完成签到 ,获得积分10
16秒前
桐桐应助long采纳,获得10
19秒前
完美世界应助Gaga采纳,获得10
19秒前
自由的傲易完成签到,获得积分10
20秒前
一只完成签到,获得积分10
20秒前
lllllnnnnj发布了新的文献求助10
20秒前
20秒前
量子光学的腔光力完成签到,获得积分10
21秒前
所所应助789采纳,获得10
23秒前
23秒前
小开完成签到,获得积分10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
28秒前
酷波er应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
CodeCraft应助面包小狗采纳,获得10
28秒前
tian发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734