Understanding of Task-Specific and Subject-Specific Components in Surface EMG

手势 计算机科学 可解释性 稳健性(进化) 鉴定(生物学) 任务(项目管理) 人工智能 一般化 语音识别 手势识别 人机交互 模式识别(心理学) 机器学习 工程类 数学分析 基因 生物 化学 系统工程 植物 生物化学 数学
作者
Yangyang Yuan,Jionghui Liu,Xinyu Jiang,Jiahao Fan,Chih-Hong Chou,Chenyun Dai
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:35 (09)
标识
DOI:10.1142/s0129065725500467
摘要

Surface electromyogram (sEMG) signals are widely used in human–machine interfaces for gesture recognition and user identification, but existing models often struggle with generalization across different individuals due to subject-specific neuromuscular characteristics. This study introduced a disentanglement model to separate task-specific and subject-specific components from sEMG signals, thus improving the generalization and interpretability of gesture recognition and user identification systems. Experimental results demonstrate that disentangled task-specific components significantly improve the accuracy of both gesture classification and user identification across different subjects and days, outperforming conventional methods in the same scenario. Further analysis of the extracted components reveals that task-specific components capture consistent activation patterns for the same gestures across individuals. In contrast, subject-specific components reflect unique neuromuscular characteristics that can be used for user identification. Notably, subject-specific components show reduced similarity compared to task-specific components in inter-day scenarios, contributing to more accuracy decrease in user identification than in gesture recognition. These findings suggest that the disentanglement approach not only boosts classification performance but also provides deeper insights into the physiological mechanisms underlying sEMG signals. The model’s ability to isolate and interpret different neuromuscular components holds promise for enhancing the robustness of sEMG-based applications in real-world settings, such as rehabilitation and user authentication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Toungoo发布了新的文献求助10
1秒前
2秒前
3秒前
顾矜应助狂野凝竹采纳,获得10
4秒前
田様应助烂漫的易真采纳,获得30
4秒前
星辰大海应助吕大本事采纳,获得10
7秒前
qt发布了新的文献求助10
7秒前
7秒前
yinjs158发布了新的文献求助10
7秒前
9秒前
9秒前
..完成签到,获得积分10
11秒前
HEHONGBIN完成签到,获得积分10
11秒前
yayyaya发布了新的文献求助10
12秒前
FashionBoy应助Toungoo采纳,获得10
13秒前
典雅煎蛋发布了新的文献求助10
15秒前
Fox发布了新的文献求助10
15秒前
冰魄落叶完成签到,获得积分10
16秒前
华仔应助wangshuhong采纳,获得10
17秒前
17秒前
18秒前
猪猪侠发布了新的文献求助10
18秒前
粥粥应助翠萍采纳,获得10
18秒前
lh完成签到,获得积分10
20秒前
今后应助苗条荆采纳,获得15
20秒前
科研通AI2S应助清音采纳,获得30
20秒前
小西发布了新的文献求助30
21秒前
情怀应助Mimi采纳,获得20
22秒前
科目三应助研友_ZlPDdZ采纳,获得10
22秒前
无花果应助傢誠采纳,获得30
22秒前
23秒前
23秒前
25秒前
222完成签到,获得积分10
25秒前
27秒前
lindalin发布了新的文献求助10
28秒前
playgirl02发布了新的文献求助10
29秒前
dayangegege完成签到 ,获得积分10
30秒前
沐屿宸发布了新的文献求助10
31秒前
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088842
求助须知:如何正确求助?哪些是违规求助? 3627556
关于积分的说明 11501967
捐赠科研通 3340306
什么是DOI,文献DOI怎么找? 1836275
邀请新用户注册赠送积分活动 904291
科研通“疑难数据库(出版商)”最低求助积分说明 822208