Artificial embodied circuits uncover neural architectures of vertebrate visuomotor behaviors

生物神经网络 具身认知 神经科学 计算机科学 斑马鱼 感觉系统 人工神经网络 感受野 人工智能 生物 生物化学 基因
作者
Xiangxiao Liu,Matthew D. Loring,Luca Zunino,Kaitlyn E. Fouke,François A. Longchamp,Alexandre Bernardino,Auke Jan Ijspeert,Eva A. Naumann
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:10 (107): eadv4408-eadv4408 被引量:2
标识
DOI:10.1126/scirobotics.adv4408
摘要

Brains evolve within specific sensory and physical environments, yet neuroscience has traditionally focused on studying neural circuits in isolation. Understanding of their function requires integrative brain-body testing in realistic contexts. To investigate the neural and biomechanical mechanisms of sensorimotor transformations, we constructed realistic neuromechanical simulations (simZFish) of the zebrafish optomotor response, a visual stabilization behavior. By computationally reproducing the body mechanics, physical body-water interactions, hydrodynamics, visual environments, and experimentally derived neural network architectures, we closely replicated the behavior of real larval zebrafish. Through systematic manipulation of physiological and circuit connectivity features, impossible in biological experiments, we demonstrate how embodiment shapes neural activity, circuit architecture, and behavior. Changing lens properties and retinal connectivity revealed why the lower posterior visual field drives optimal optomotor responses in the simZFish, explaining receptive field properties observed in real zebrafish. When challenged with novel visual stimuli, the simZFish predicted previously unknown neuronal response types, which we identified via two-photon calcium imaging in the live brains of real zebrafish and incorporated to update the simZFish neural network. In virtual rivers, the simZFish performed rheotaxis autonomously by using current-induced optic flow patterns as navigational cues, compensating for the simulated water flow. Last, experiments with a physical robot (ZBot) validated the role of embodied sensorimotor circuits in maintaining position in a real river with complex fluid dynamics and visual environments. By iterating between simulations, behavioral observations, neural imaging, and robotic testing, we demonstrate the power of integrative approaches to investigating sensorimotor processing, providing insights into embodied neural circuit functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助S7采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
微风发布了新的文献求助50
1秒前
英姑应助科研王采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
脑洞疼应助迷人宛亦采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
香菜发布了新的文献求助10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
6秒前
yuaner发布了新的文献求助10
8秒前
8秒前
彭于晏应助ysta采纳,获得10
8秒前
所所应助义气玫瑰采纳,获得10
9秒前
9秒前
11秒前
wenwen发布了新的文献求助10
11秒前
yoru16发布了新的文献求助10
11秒前
11秒前
小二郎应助可乐加冰采纳,获得10
12秒前
12秒前
lingck发布了新的文献求助10
12秒前
Jing完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695894
求助须知:如何正确求助?哪些是违规求助? 5103742
关于积分的说明 15217391
捐赠科研通 4852004
什么是DOI,文献DOI怎么找? 2602894
邀请新用户注册赠送积分活动 1554546
关于科研通互助平台的介绍 1512617