Genetically Engineered Extracellular Vesicles Harboring Transmembrane Scaffolds Exhibit Differences in Their Size, Expression Levels of Specific Surface Markers and Cell-Uptake

细胞外小泡 细胞生物学 跨膜蛋白 小泡 细胞 细胞外 基因工程 化学 生物物理学 生物 生物化学 基因 受体
作者
Jiayi Zhang,Annie Kathleen Brown,Brendan M. Johnson,David Diebold,Kyle Asano,Gerard Marriott,Biao Lü
出处
期刊:Pharmaceutics [Multidisciplinary Digital Publishing Institute]
卷期号:14 (12): 2564-2564 被引量:10
标识
DOI:10.3390/pharmaceutics14122564
摘要

Background: Human cell-secreted extracellular vesicles (EVs) are versatile nanomaterials suitable for disease-targeted drug delivery and therapy. Native EVs, however, usually do not interact specifically with target cells or harbor therapeutic drugs, which limits their potential for clinical applications. These functions can be introduced to EVs by genetic manipulation of membrane protein scaffolds, although the efficiency of these manipulations and the impacts they have on the properties of EVs are for the most part unknown. In this study, we quantify the effects of genetic manipulations of different membrane scaffolds on the physicochemical properties, molecular profiles, and cell uptake of the EVs. Methods: Using a combination of gene fusion, molecular imaging, and immuno-based on-chip analysis, we examined the effects of various protein scaffolds, including endogenous tetraspanins (CD9, CD63, and CD81) and exogenous vesicular stomatitis virus glycoprotein (VSVG), on the efficiency of integration in EV membranes, the physicochemical properties of EVs, and EV uptake by recipient cells. Results: Fluorescence imaging and live cell monitoring showed each scaffold type was integrated into EVs either in membranes of the endocytic compartment, the plasma membrane, or both. Analysis of vesicle size revealed that the incorporation of each scaffold increased the average diameter of vesicles compared to unmodified EVs. Molecular profiling of surface markers in engineered EVs using on-chip assays showed the CD63-GFP scaffold decreased expression of CD81 on the membrane surface compared to control EVs, whereas its expression was mostly unchanged in EVs bearing CD9-, CD81-, or VSVG-GFP. The results from cell uptake studies demonstrated that VSVG-engineered EVs were taken up by recipient cells to a greater degree than control EVs. Conclusion: We found that the incorporation of different molecular scaffolds in EVs altered their physicochemical properties, surface protein profiles, and cell-uptake functions. Scaffold-induced changes in the physical and functional properties of engineered EVs should therefore be considered in engineering EVs for the targeted delivery and uptake of therapeutics to diseased cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅太君完成签到,获得积分20
刚刚
刚刚
忧郁妙之发布了新的文献求助10
刚刚
谦让涵菡完成签到 ,获得积分10
1秒前
思源应助刻苦紫文采纳,获得10
1秒前
3秒前
3秒前
天凉好个秋完成签到 ,获得积分10
5秒前
5秒前
ZMR121121完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
zhouyunan完成签到,获得积分10
11秒前
打打应助xiangyx采纳,获得10
11秒前
12秒前
15秒前
丘比特应助kyx采纳,获得10
15秒前
16秒前
可可发布了新的文献求助10
16秒前
冬云雀发布了新的文献求助10
17秒前
20秒前
21秒前
21秒前
22秒前
zhk发布了新的文献求助10
23秒前
张张发布了新的文献求助10
24秒前
陈雪阳完成签到,获得积分10
24秒前
24秒前
xiangyx发布了新的文献求助10
25秒前
小二郎应助刻苦紫文采纳,获得10
26秒前
kyx发布了新的文献求助10
27秒前
28秒前
28秒前
30秒前
anton发布了新的文献求助10
31秒前
科研助手6应助悦耳的平灵采纳,获得10
31秒前
YJ发布了新的文献求助10
32秒前
一支得卦发布了新的文献求助10
33秒前
千页豆腐发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791065
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276878
捐赠科研通 3052348
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803102
科研通“疑难数据库(出版商)”最低求助积分说明 761066