SARU: A self‐attention ResUNet to generate synthetic CT images for MR‐only BNCT treatment planning

核医学 医学影像学 放射治疗计划 放射治疗 放射科 计算机断层摄影术 医学 医学物理学
作者
Sheng Zhao,Changran Geng,Chang Guo,Feng Tian,Xiaobin Tang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 117-127 被引量:18
标识
DOI:10.1002/mp.15986
摘要

Abstract Purpose Despite the significant physical differences between magnetic resonance imaging (MRI) and computed tomography (CT), the high entropy of MRI data indicates the existence of a surjective transformation from MRI to CT image. However, there is no specific optimization of the network itself in previous MRI/CT translation works, resulting in mistakes in details such as the skull margin and cavity edge. These errors might have moderate effect on conventional radiotherapy, but for boron neutron capture therapy (BNCT), the skin dose will be a critical part of the dose composition. Thus, the purpose of this work is to create a self‐attention network that could directly transfer MRI to synthetical computerized tomography (sCT) images with lower inaccuracy at the skin edge and examine the viability of magnetic resonance (MR)‐guided BNCT. Methods A retrospective analysis was undertaken on 104 patients with brain malignancies who had both CT and MRI as part of their radiation treatment plan. The CT images were deformably registered to the MRI. In the U‐shaped generation network, we introduced spatial and channel attention modules, as well as a versatile “Attentional ResBlock,” which reduce the parameters while maintaining high performance. We employed five‐fold cross‐validation to test all patients, compared the proposed network to those used in earlier studies, and used Monte Carlo software to simulate the BNCT process for dosimetric evaluation in test set. Results Compared with UNet, Pix2Pix, and ResNet, the mean absolute error (MAE) of self‐attention ResUNet (SARU) is reduced by 12.91, 17.48, and 9.50 HU, respectively. The “two one‐sided tests” show no significant difference in dose‐volume histogram (DVH) results. And for all tested cases, the average 2%/2 mm gamma index of UNet, ResNet, Pix2Pix, and SARU were 0.96 ± 0.03, 0.96 ± 0.03, 0.95 ± 0.03, and 0.98 ± 0.01, respectively. The error of skin dose from SARU is much less than the results from other methods. Conclusions We have developed a residual U‐shape network with an attention mechanism to generate sCT images from MRI for BNCT treatment planning with lower MAE in six organs. There is no significant difference between the dose distribution calculated by sCT and real CT. This solution may greatly simplify the BNCT treatment planning process, lower the BNCT treatment dose, and minimize image feature mismatch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优乐美完成签到,获得积分10
刚刚
sajnk发布了新的文献求助10
刚刚
1秒前
Ava应助不会挂科采纳,获得10
1秒前
2秒前
朝朝发布了新的文献求助10
2秒前
aliensas发布了新的文献求助10
2秒前
暮雨初晴完成签到,获得积分10
5秒前
5秒前
秀秀发布了新的文献求助10
5秒前
情怀应助beizi采纳,获得10
5秒前
喔喔发布了新的文献求助10
7秒前
李爱国应助何雨航采纳,获得10
8秒前
8秒前
8秒前
zeppeli完成签到 ,获得积分10
10秒前
小杭76应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得30
10秒前
天天快乐应助科研通管家采纳,获得30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
zz发布了新的文献求助10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
upupup应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
迷路雨寒应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
cc完成签到 ,获得积分10
12秒前
zdf完成签到,获得积分10
12秒前
ding应助aliensas采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299726
求助须知:如何正确求助?哪些是违规求助? 4447841
关于积分的说明 13843825
捐赠科研通 4333454
什么是DOI,文献DOI怎么找? 2378848
邀请新用户注册赠送积分活动 1374078
关于科研通互助平台的介绍 1339634