A novel deep learning–based fault diagnosis algorithm for preventing protection malfunction

断层(地质) 人工智能 故障检测与隔离 计算机科学 自编码 钥匙(锁) 鉴定(生物学) 陷入故障 故障覆盖率 人工神经网络 故障指示器 深度学习 机器学习 特征提取 电力系统 数据挖掘 工程类 功率(物理) 计算机安全 执行机构 地震学 植物 量子力学 电子线路 地质学 生物 物理 电气工程
作者
Jiaxiang Hu,Zhou Liu,Jianjun Chen,Weihao Hu,Zhenyuan Zhang,Zhe Chen
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:144: 108622-108622 被引量:26
标识
DOI:10.1016/j.ijepes.2022.108622
摘要

• DAE (deep auto-encoder) is implemented to extract key fault feature and re-divide sample dataset. Facing complex power system operation data, this process can be regarded as automatic data cleaning for system operation information. • Supervised deep networks learn key fault samples extraction through the knowledge of unsupervised process. In this way, the samples containing key fault features are automatically extracted by the fault identification network and indicate the system status. • Instead of increasing the complexity of the model, this article improves the performance of framework from the perspective of sample space and the union of multiple special networks. The samples with key features required by the tasks ensure that the models can learn the correct knowledge and have better performance. • The proposed framework can resist the influence of disturbance and distinguish fault state and fault types. In addition, it provides a kind of idea based on samples distribution for diagnosis tasks. To prevent serious malfunctions and reduce the impact of faults during an emergency state of a power system, protection systems are required to have disturbance and fault state identification abilities. In this study, a novel fault diagnosis framework based on deep learning with anti-disturbance ability is proposed to identify the fault state and fault type information, even under the influence of system disturbance. The framework consists of two parts: unsupervised and supervised learning. Specifically, an unsupervised deep auto-encoder (DAE) is applied for offline feature selection and data cleaning. The DAE can extract key fault features and significantly improve the fault detection accuracy. Furthermore, two supervised convolutional neural networks are used to learn key fault feature extraction online from complex operation information in power systems and assess the fault situation and type. Using case studies, the proposed method was implemented and compared with existing intelligent methods. The results indicate that the proposed framework has a better performance in terms of fault state identification and protection malfunction prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助简单的夜绿采纳,获得10
刚刚
刚刚
kane完成签到 ,获得积分10
刚刚
在水一方应助美好斓采纳,获得10
刚刚
哭泣朝雪发布了新的文献求助10
1秒前
真实的沛山完成签到 ,获得积分10
2秒前
Owen应助海边看日出采纳,获得10
2秒前
岸部发布了新的文献求助10
3秒前
cangcang完成签到,获得积分10
3秒前
Hello应助小羊采纳,获得10
3秒前
4秒前
乐乐应助快乐忆灵采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
浮游应助先字母采纳,获得10
6秒前
陈chen发布了新的文献求助10
6秒前
打打应助龚修洁采纳,获得10
6秒前
嘻嘻嘻发布了新的文献求助10
6秒前
科研通AI5应助mmb采纳,获得30
8秒前
SciGPT应助岸部采纳,获得10
8秒前
solid发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
梁三岁完成签到,获得积分10
11秒前
chaotong发布了新的文献求助10
13秒前
有梦不觉人生寒完成签到,获得积分10
14秒前
慕青应助哭泣朝雪采纳,获得10
14秒前
嘻嘻嘻完成签到,获得积分10
14秒前
阳光three不怕困难关注了科研通微信公众号
14秒前
美好斓发布了新的文献求助10
14秒前
15秒前
天天快乐应助王法法采纳,获得10
15秒前
15秒前
酷炫的幻丝完成签到 ,获得积分10
15秒前
杨丹完成签到 ,获得积分20
17秒前
传奇3应助XIA采纳,获得10
17秒前
zh发布了新的文献求助10
17秒前
18秒前
周俊瑞发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4887055
求助须知:如何正确求助?哪些是违规求助? 4172043
关于积分的说明 12947422
捐赠科研通 3932755
什么是DOI,文献DOI怎么找? 2157780
邀请新用户注册赠送积分活动 1176252
关于科研通互助平台的介绍 1080620